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Abstract 

Our device listens to the user’s heart and outputs whether there is a possible pre-existing heart 

condition acting up that is of concern. It does this by using microphones placed near the heart. The 

microphones listen to the heart. From there we pass the microphone sound through to an analog signal 

processing unit that filters out excess noise, convert the signal to digital, take the FFT, and finds the 

MFCC components. We pass those components to a K-NN algorithm that decides whether the input was 

similar to previous abnormalities. If it is, we send the instance to the user’s doctors, notifying them that 

an issue has arisen. Currently we are able to detect an issue with 86 percent accuracy and send the data 

within 9 seconds.  
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1. Introduction 
In the United States alone, 735,000 Americans suffer from a heart attack every year [1]. Of those 

735,000 Americans, 47% suffer from the heart attack outside of the hospital. Heart attacks, however, 

are not the only heart condition known to doctors in the United States. 610,000 Americans die every 

year due to some kind of heart condition, whether it indeed is a heart attack or any condition listed in 

Appendix A.  

We propose a way to monitor a patient’s heart outside of the hospital.  Figure 1 shows the physical 

design of our system. On the outside, it is a wearable band that a patient would wear around the chest, 

near the heart. On the inside, there is a system constantly picking up the patient’s heart sounds through 

a microphone, analyzing those heart sounds, and ultimately classifying the heart signal as normal, 

murmur, or extrasystole. Figure 2 is the block diagram of our whole system.  

We will be taking you through our design decisions, our challenges, and how we verified and tested each 

block of our system. Our intended goals were to (1) pick up the heartbeat sounds in frequency range 20 

and 150 Hz [2], (2) classify the heartbeat sound with an accuracy of 90%, and (3) run the classification 

algorithm within four seconds.  We successfully picked up and analyzed the heart signals with a few 

caveats: our accuracy reaches a maximum of 86% and the classification algorithm takes 9.556 seconds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Physical design of the machine-learning enabled stethoscope. 
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1.1 Background Information 
Before going into the design, it is important to clarify what we classify as normal, murmur, and 

extrasystole. A normal heart sound has a consistent “lub dub, lub dub” pattern.  Figure 3a shows a 

MATLAB plot of a recorded healthy, normal heartbeat. Each peak represents a “lub” and a “dub” with 

little noise in between the peaks. A heartbeat with a murmur has abnormal noise between the “lub” and 

“dub” in the pattern. In Figure 3b, a murmur is evident through the visible noise or large amplitudes 

between the “lub” and the “dub.” This typically indicates abnormal blood flow near the heart and can be 

correlated with a serious heart condition. Finally, Figure 3c shows a heart pattern with an extrasystole. 

Having an extrasystole is another way of saying that the heart has an irregular rhythm, such as two 

“lubs” or “dubs” in a row. Figure 3c demonstrates the effect of an extrasystole with a very subtle “lub 

dub, dub” pattern.  

 

The data we are using for training and classifying each incoming heart signal is from [3]. This database 

has all three of the classifications we used for our machine learning algorithm stored as Waveform 

Audio Files (WAV files).  

 

 

 

Figure 2. Block diagram of the system, containing the overall flow of the hardware and software. 
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(a) (b) 

 

(c)  

Figure 3.  Visual representation for (a) normal,  (b) murmur, and (c) extrasystole WAV files. 
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2 Design 

2.1 Design Procedure 

2.1.1 Power Unit 

For our power supply there were a couple of ways we could go. At first, we planned on creating our own 

regulator to drop the voltage but after doing some research, saw we could have a simple and complete 

circuit by using a pre-manufactured one. From here we needed to decide on the actual batteries. We 

needed something greater than 5 volts, which is the threshold input voltage for the voltage regulator. It 

also needed to be low profile since the plan was for our circuit to be wearable. We didn’t want to use 

lithium ion batteries because of the safety issues it comes with. We settled on coin cell batteries 

because they allowed the voltage we needed while also being low profile and easy to replace.  

2.1.2 Microphone Array 

The microphones are the sensors of this circuit. They have the job of picking up the sounds produced by 

the heart and lungs so that we may then, through further processing, detect any issues with those 

organs. This means that the microphones need to be sensitive enough to pick up the sounds from the 

organs. The heart produces sounds in the range of 20Hz to 150Hz, and the lungs from 100Hz to 20kHz. 

We therefore chose microphones which had the capacity to pick up signals from this entire frequency 

range.  

There are several microphone architectures that can be chosen here but given that this device is meant 

to be embedded as a wearable, we have the limitations of size and power. We chose a small condenser 

microphone with a 20-20kHz range and an operating voltage of 3-5V. To remove the noise below 20Hz 

we used the passive Resistor-Capacitor equation, Equation (2.1), to find appropriate resistor and 

capacitor values.  

𝑓𝑐 =
1

2𝜋𝑅𝐶
      (2.1) 

Where 𝑓𝑐 is the desired cutoff frequency, R is the resistor value and C is the capacitor value. 

2.1.3 Analog Signal Processing 

Now that we have a signal coming from the microphone unit we then need to further process it. This is 

first done by the Analog Signal Processing. Here we do 2 things; amplify the microphone input by a 

factor of 1.4 to reach a 3V range and separate the signal into a high pass filtered signal and a low pass 

filtered signal (corresponding to the heart and lung sound range). To do this, we used an active second 

order filter design. Here we introduce two equations, Equation (2.2) is used to calculate the values 

needed for the gain of the filter, and Equation (2.3) is used for the calculation of the resistor and 

capacitor values for the corresponding cutoff frequency in a second order filter.  

𝐺 = 1 +
𝑅2

𝑅1
      (2.2) 

Where 𝑅1 and 𝑅2 are the resistance values and G is the gain desired.  
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𝑓𝑐 =
1

2𝜋𝑅1𝐶1𝑅2𝐶2
      (2.3) 

Where 𝑓𝑐 is the desired cutoff frequency, 𝑅1 and 𝑅2 are the resistor values and 𝐶1 and 𝐶2 are the 

capacitor values. Since this is an active filter design we also need to incorporate operational amplifiers. 

Here we were limited from a prior design decision – we are only using one power line which runs at 

3.3V. This means that the operational amplifier needed to operate at 3.3V. We chose an operational 

amplifier which had the lowest phase lag and power usage characteristics. 

2.1.4 Microcontroller 

The microcontroller choice ended up being very influential to the progress of the project. We wanted to 

choose a microcontroller which used little power (to meet the 12.5-hour operating time goal), 3.3V 

operating voltage, small physical profile, and simple to integrate into the hardware. This leaves us with 2 

microcontroller architectures; ATmega microcontrollers and PIC microcontrollers. Given the goal of 4 

seconds until a classification we wanted the faster microcontroller. This lead us to the PIC 

microcontroller. The PIC32 had sufficient processing capability as well as a fast analog to digital 

converter which negated the need for a separate analog to digital converter chip. 

The microcontroller we chose, PIC32MX230F256B, has a 50Mhz core. From the slowest operation, the 

calculation of the fast Fourier transform, we find that we need at least a 4MHz processor to achieve the 

desired calculation time (through Equation (2.4)). The PIC32 exceeded this. 

𝑛 = #𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒 ∗ 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 ∗ #𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠            𝑆𝐶𝑃𝑈 >  𝑛𝑙𝑜𝑔𝑛 > 4𝑀𝐻𝑧   (2.4) 

Where #𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒 is the maximum sample rate, 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 is the length of each sampled audio in 

seconds, #𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is the number of cycles it takes for each calculation and 𝑆𝐶𝑃𝑈 is the speed of the 

core. When we looked for the desired analog to digital conversion speed and accuracy, we find that we 

needed a 10-bit digital reading, and at least 85 thousand sampled per second. The PIC32 has a capacity 

of up to 1 million samples per second, which far exceeds our requirements.  

2.1.5 Digital Signal Processing (DSP) 

To compare audio signals with one another, it is necessary to compute their Mel Frequency Cepstral 

Coefficients (MFCC’s).  We followed the flowchart in Figure 4, where we input the already-filtered audio 

signal and output the MFCC feature vectors to the machine learning unit.  

The flow starts with an incoming audio signal that gets windowed into short frames because DSP 

assumes that frequencies won’t change much on a very short time scale. After the signal has been 

windowed, we calculate the Discrete Fourier Transform (DFT) of each frame, 

𝑆𝑖(𝑘) =  𝑆𝑖(𝑛)ℎ(𝑛)𝑒−
𝑗2𝜋𝑘𝑛

𝑁                                                                  (2.5) 

where 𝑆𝑖(𝑘) represented the DFT of each frame i and ℎ(𝑛) is an n sample long analysis window, also 

known as the Hamming window, that ensures the audio signal represented in frame i is a continuous 

signal [4]. We then proceed to derive the power spectrum from the DFT using 
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𝑃𝑖(𝑘) =  
1

𝑁
|𝑆𝑖(𝑘)|2                                                                         (2.6) 

where 𝑃𝑖(𝑘) is the power spectrum of frame i, 𝑆𝑖(𝑘) is the DFT of each frame i, and N is the number of 

samples in frame i.  

 

 

 

 

 

 

The resulting power spectrum gives us an idea of how of what frequencies are present in each frame. 

Our own ears cannot sense any difference between frequencies that are very close to each other in 

value. We create Mel filter banks and sum up the frequency energies in each filter bank. To create these 

triangular filters, we program the equation, 

 

 

(2.7) 

 

  

where 𝐻𝑚(𝑘) is the filter bank, m is the number of filter banks chosen by the programmer, and function 

f represents a list of m + 2 Mel-spaced frequencies [4]. At this point, we have m + 2 summed-up energies 

for each frame of the initial audio signal. The next step in the flowchart is to take the logarithm of all m + 

2 energies, again to mimic the human ear that does not pick up sound on a linear scale. Finally, we 

calculate the Discrete Cosine Transform (DCT) to separate the overlaps between each frame, 

𝑋𝑘 =  
1

2
(𝑥0 + (−1)𝑘𝑥𝑁−1) +  ∑ 𝑥𝑛 cos [

𝜋

𝑁−1
𝑛𝑘]𝑁−2

𝑛=1                                               (2.8) 

where 𝑋𝑘 is the DCT of each energy k and 𝑥0…..𝑥𝑁−1 represent the m + 2 energies [6]. This leaves us with 

40 cepstral coefficients for each frame. We only take the first 13 to get the most prominent energies 

found in the initial audio signal [4].  

 

 

 

Figure 4. Digital signal processing software flowchart [5].  
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2.1.6 Machine Learning 

The importance of the machine learning unit is to quickly and accurately classify the incoming heart 

signal. After reading auscultation-based papers on classifying heartbeats, we narrowed down the 

machine learning algorithm search to kth-nearest neighbor (kNN), support vector machine (SVM), and 

multilayer perceptron (MLP). All three have their individual pros and cons.  kNN is much simpler to 

implement than the latter two but is extremely sensitive to both the value of k and the distance metric 

chosen to measure the distance between the input point and the training data set points. SVM, on the 

other hand, is more unsusceptible to outlier points, meaning that if for some reason there is an audio 

sample in the training data set that does not accurately represent a heartbeat pattern, it will be ignored 

in the classification process.  The downside to using SVM is that it works better when there are fewer 

data points.  The larger the database, the less accurate and slower SVM becomes.  The last option, MLP, 

is ideal for extremely large training data sets because the former two are slower to train.  

[7] followed a similar research path for classifying an incoming heart signal. Figure 5 shows their results 

when testing the different algorithms. Sen, Spec, and Acc represent the sensitivity, specificity, and 

accuracy of each algorithm, respectively. Due to time constraints, the simplicity of kNN, and kNN’s 

performance in Figure 5, we decided to move forward with kNN for classifying our heart signals.  

 

 

 

 

 

 

 

 

 

2.1.7 Memory 

The memory in all the microcontrollers was insufficient for storing usage data and the database 

information used by the classification algorithm. The design decision was made to use a separate 

memory chip to augment the built-in microcontroller memory. In deciding how to implement the extra 

memory, we wanted to minimize the overhead from using a separate memory. An EEPROM chip met the 

requirements of fast read and write times, as well as minimal circuitry and easy integration. In choosing 

a specific memory chip, we opted for the largest possible (and reasonably priced) EEPROM memory chip 

– which we found to be 256kBytes. 

Figure 5. Accuracy of classification using different machine learning algorithms [7] 
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2.2 Design Details 

2.2.1 Power Unit  

For the design of the power supply our biggest concerns included safety and the capability to hold a 

charge at maximum current for greater than 12.5 hours. We also needed to comply with the 

components we had already chosen, mainly the microprocessor. The processor took 3.3 volts as input so 

we used a voltage regulator that dropped the voltage to that amount. To power the circuit we chose 4 

1.5 Volt coin cell batteries. To calculate the amount of power we needed for 12.5 hours we calculated 

the worst-case power consumption from each component and added them up. We chose these rather 

than alternatives because they provide a light profile and the voltage we need to power the circuit. We 

also included two capacitors to reduce the input noise of the batteries – this was recommended by the 

version of regulator we used. One of the capacitors was 100nF while the second was 10 microfarads.  

2.2.2 Microphone Array 

The microphone array is rather simple to construct. Each microphone needs only a high pass filter which 

acts to remove irrelevant low frequencies (less than 20Hz).  Using Equation (2.1), we calculate the 

resistor to be 2.2k Ohms and capacitor to be 3.6 micro Farads for a cutoff frequency of 20Hz. The 

schematic is shown in Figure 6. 

 

 

 

  

2.2.3 Analog Signal Processing 

Using Equations (2.2) and (2.3), we calculated the resistor and capacitor values (shown in Table 1).  

Component R2 R3 R4 R5 R7 R8 C2 C3 C5 C6 

Value 64.9k 1.69M 53.6k 130k 1.69M 1.69M 5.1n 5.1n 30n 30n 

Figure 6. Microphone connection circuit with High 
Pass filter to remove signals below 20Hz. 

Table 1   Analog Signal Processing Component Values 
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2.2.4 Microcontroller 

To install the microcontroller, we followed the design suggestions for the minimum required 

connections in the datasheet for the PIC32MX230F256B. The resulting schematic is shown in Figure 8. 

 

 

 

 

 

 

 

The design decision to choose this microcontroller resulted in roadblocks in the project. Having 

underestimated the difficulty of finding supporting documentation for calculating MFCCs in C, as well as 

this microcontrollers inability to run the C++ code, we were ultimately unable to perform the 

classification on the microcontroller itself. We should have chosen a much more powerful 

microcontroller which would have had the capability of running C++ code with ease.  

Figure 7. The circuit for the analog signal processing. The top schematic shows the microphone connected to the Low Pass 
Filter (LPF) and the bottom schematic shows the High Pass Filter (HPF) 

Figure 8. PIC32MX230F256B Schematic 
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2.2.5 Digital Signal Processing 

Using equations (2.5), (2.6), (2.7), and (2.8), we took the training data set of WAV files and converted 

them all to files with MFCC feature vectors so that we can use a training data set of MFCC’s. In this unit, 

there are a few design choices we had to make in terms of how we chose the variables for calculating 

the cepstral coefficients. Table 2 shows these variables and the values we chose; we agreed to use the 

standard values for audio speech recognition, defined in [4]. In particular, we wanted to make sure the 

frame step was small because of how sensitive a heart signal is to a small change in frequency. With a 

higher overlap between frames, we captured a more accurate representation of the energies present in 

one sample.  

 

Variables Design Choice 

Window Length 25 ms 

Frame Step 10 ms 

No. of Filter banks 40 

No. of MFCC’s 13 

 

The resulting format of each training data set file is an m x n matrix, where m is the number of frames in 

an audio signal, each of length 25 ms, and n is the number of MFCC’s. Each row in the matrix represents 

a feature vector used to compare two sources of audio, utilized in the machine learning unit.  

2.2.6 Machine Learning 

kNN takes an input point and finds the distance between that point and all the points in the training 

data set. If a training data set has two classifications, “Class A” and “Class B,” and the majority of the k 

points around the input point are classified as “Class B,” then kNN classifies that input as “Class B” and 

adds it to the training data set so that the algorithm can “learn.” In our case, our training data set points 

are the MFCC feature vectors of each input WAV file, our input in the incoming heart signal we just read 

from the patient, and our distance between points is how close the MFCC feature vectors are with one 

another.  

kNN depends heavily on two metrics previously mentioned: the value of k and the distance metric. The 

value of k is determined through experimentation. The distance metric, however, had to be chosen 

ahead of time to compare MFCC features. We agreed to use a combination of dynamic time warping [8] 

and Euclidean distance to compare signals that vary on the time domain.  

To calculate the distance between points using dynamic time warping, we followed the pseudocode in 

[8].  We created two arrays, one array for the input heart signal and one array for a training data set 

signal. Each element in the array represents a feature vector of the audio signal. We then took the 

Euclidean distance between all possible couplings of feature vectors and found a diagonal path through 

the matrix that represents the sum of the smallest Euclidean distances calculated, as seen by the blue 

blocks in Figure 9. This sum is the final distance metric used to find the k closest points to our input.  

 

Table 2 Defined variables for digital signal processing calculation 
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2.2.7 Memory 

The training data set contains a total of 33.1 MB of data: 17.5 MB of normal WAV files, 10.2 MB of 

murmur WAV files, and 5.4 MB of extrasystole WAV files. After each run of the kNN algorithm, we add 

another MFCC file to memory, which is about 50 KB in size. The memory chip we initially proposed is no 

way capable of handling this amount of data and because of this constraint we were forced to run the 

algorithm on a laptop.  

Integrating the EEPROM memory chip was easy due to an easy communication interface and low 

hardware overhead. The schematic for how the EEPROM was connected is shown below. The chip 

required only two connections to the microcontroller, the SCL1 pin and the SDA1 pin. 

 

  

Figure 9. Dynamic time warping matrix of distances [9]. 

Figure 10. EEPROM chip connections 
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3. Design Verification 

3.1 Hardware 

3.1.1 Power Unit  

The power block provides a single 3.3V line which powers all other components on the board. There 

were 3 requirements on the power unit; generate 3.3V with a deviation of 0.1V, be able to operate with 

currents of up to 200mA and provide 2500mAh of power (which is required for the system requirement 

of operating for at least 12.5 hours).  

To verify the power regulator circuit, we supplied a variety of input voltages using a lab power supply – 

ranging from 0V to 20V and tested the output with a multimeter. The measurement was repeated 

across several voltage regulators. The setup looked as shown in Figure 11. 

The results from these measurements are shown in Table 3. 

Input Voltage (V) Regulator 1 Output (V) Regulator 2 Output (V) Regulator 3 Output (V) 

0 0 0 0 

2 0.53 0.61 0.62 

4 2.15 2.08 2.41 

6 3.28 3.31 3.30 

10 3.30 3.31 3.32 

20 3.31 3.31 3.32 

 

We required the power supply to provide at least 2500mAh of power. This was required to power the 

unit under worst case power usage for 12.5 hours. To verify this we connected the battery to a resistor 

load that produced 200mA current (our worst-case draw) and checked after the 12.5-hour period if the 

batteries were still providing power. Since this depletes the battery we operated this test on only two 

batteries (summaries in Table 4). 

Battery # Power after 12.5 hours 

1 Yes 

2 Yes 

Figure 11. Power regulator verification setup. The middle unit is the power regulator circuit, with power supply on the left, 
and multimeter on the right. 

Table 3   Power Regulator Verification Results 

Table 4   Power Supply Verification Results 
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3.1.2 Microphone Array 

The microphones are the sensors of our device and need to be able to pick up and amplify the sounds of 

the heart and lungs. We connected the microphones to an oscilloscope and tested their behavior. The 

setup is shown in Figure 12. 

 

Success in this test is defines as a peak-to-peak voltage of up to 3V across the relevant frequencies and 

from database audio as well as real time audio from a person. Two oscilloscope readings of heart sounds 

are shown in Figure 13, one from a database audio sample (left) and the second from a human subject 

(right). 

 

The signal is strong enough to be used and now needs to be cleaned and separated into two frequency 

ranges. To verify the low pass and high pass filters is a straightforward procedure. We set up the filter 

circuits with a signal generator at one end and an oscilloscope at the other end. We then compare the 

input signal magnitude with the output signal magnitude to find the magnitude response. Experimental 

results are overlaid on simulated graphs in Figure 14 and Figure 15. 

Figure 12. Microphone verification setup. The speaker outputs a known signal that is directed at the microphone. The 
oscilloscope picks up the signal and displays it. 

Figure 13. Two oscilloscope readings of heart sounds. The top represents a database audio sample, the bottom is 
recorded from a human subject. 
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3.1.3 Analog to Digital Converter 

Here we needed to verify two things; that the analog to digital conversion was sampling the analog 

signals at the right frequency, and that the values would be in the appropriate range. To verify these, we 

used two methods. To verify on the breadboard, we added an LCD screen to our layout. On the LCD we 

printed the values as well as the number of times it had sampled within a period. On the circuit, we took 

advantage of the pin headers to install two LEDs which would blink every x number of samples in one 

experiment, and pulse width modulate the LEDs in another (resulting in brightness corresponding to the 

magnitude of the value read).  

3.1 Software 

3.2.1 Machine Learning  

Once we finished programming kNN, we had to experiment with different k values to determine what 

value of k makes the classification of heart signals the most accurate. The machine learning database 

provided us with 412 WAV files. We took 312 of those files, converted them to MFCC feature vectors, 

and trained them for the training data set. The leftover 100 WAV files were then used for testing the 

algorithm. Figure 16 shows the probability of correctly classifying the heart signal as normal, murmur, or 

extrasystole, depending on what value of k is being used.  

 

 

 

 

 

 

Figure 14. Experimental results (req squares) of magnitude 
response for the Low Pass Filter overlaid on top of simulation. 

Figure 15. Experimental results (red squares) of magnitude 
response of the High Pass Filter overlaid on top of simulation. 
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Figure 16 demonstrates that k = 4 gives us the highest accuracy of 86%.  We noticed that our algorithm 

was significantly better at classifying a normal heartbeat, compared to classifying the other conditions. 

This just goes to show that because our training data set has significantly more normal WAV files, it is 

better at identifying a normal heartbeat pattern.  

A requirement discussed in Appendix B was that the algorithm could run in under four seconds. 

Unfortunately, the fastest we could get our runtime to is 9.556 seconds, due to our 𝑂(𝑛2) time 

complexity and large database. 

  

Figure 16. Probability of classifying a sound correctly depending on k. 
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4. Costs 

4.1 Parts 
Table 5   Parts Costs 

Part Manufacturer Retail Cost ($) 
(per unit) 

Bulk Purchase Cost ($)  
(Per 100 units) 

Actual 
Cost ($) 

P170SP1-FC15AR10K 

 
TT_Electronics/Bl 1.05 0.775 11.16 

ATTINY45-20SUR 

 
Microchip 

Technology 
1.1 0.917 

 
13.32 

68016-404HLF 
 

Amphenol FCl 0.18 0.115 9.96 

CF14JT27K0 
 

Stackpole 
Electronics 

0.1 0.016 0.72 

FG24X7R1H224KNT06 
 

TDK Corporation 0.29 0.120 2.00 

RCE5C1H4R0C0DBH03
A 
 

Murata 
Electronics 

0.45 0.210 3.18 

RLB0913-121K 
 

Bourns Inc 0.61 0.380 2.44 

24LC256-E/P 
 

Microchip 
Technology 

0.91 0.830 3.84 

CM250C32000AZFT 
 

Citizen 
Finedevice Co 

Ltd. 

1.24 0.990 10.72 

ABMM-25.000MHZ-B2-T 
 

Abracon LLC 0.8 0.580 2.40 

810-10053-00050 
 

CNC Tech 1.40 1.090 1.40 

110990080 
 
 

Seeed 
Technology Co 

3.06 N/A 3.06 

110990077 
 
 

Seeed 
Technology Co 

3.57 N/A 7.14 

RDER71H105K2M1H03
A 
 

Murata 
Electronics 

0.52 0.240 3.64 

K104Z15Y5VF5TL2 
 
 

Vishay BC 
Components 

0.19 0.064 1.91 

RCER71H106MWK1H03
B 
 

Murata 
Electronics 

1.95 1.157 11.70 

K333K15X7RF5TL2 
 
 

Vishay BC 
Components 

0.23 0.080 1.60 

MFR-25FBF52-64K9 
 
 

Yageo 0.1 
 

0.031 0.82 

HVR3700001694FR500 
 

Vishay BC 
Components 

0.54 0.201 3.87 

MFR-25FRF52-53K6 
 

Yageo 0.1 0.033 0.5 
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MFR-25FBF52-130K 
 

Yageo 0.1 0.031 0.5 

GRPB061VWCN-RC 
 

Sullins Connector 
Solutions  

0.65 0.465 6.08 

OP262GSZ 
 

Analog Devices 
Inc 

5.59 4.749 22.36 

PIC32MX230F256B-
I/SP 
 

Microchip 
Technology 

3.94 2.89 7.88 

AT25XV041B-SSHV-T 
 

Adesto 
Technologies 

1.10 0.869 2.20 

QN9021/DY 
 

NXP 3.93 2.900 7.86 

PIC32MX230F256B-
I/SS 
 

Microchip 
Technology 

3.66 2.69 7.32 

ADF7241BCPZ 
 
 

Analog Devices 4.61 3.37 9.22 

Total    158.8 

 

4.2 Labor 
 

We expect to work 10 hours a week across 14 weeks. Using a salary of $40/hour, the labor cost per 

person comes out to, 

𝑠𝑎𝑙𝑎𝑟𝑦 ∗  2.5 ∗ 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 = 𝑡𝑜𝑡𝑎𝑙                                    (4.1) 

$40

1 ℎ𝑟
∗ 2.5 ∗ 14 𝑤𝑘𝑠 ∗

10 ℎ𝑟𝑠

1 𝑤𝑘
=

$14,000

𝑙𝑎𝑏𝑜𝑟𝑒𝑟
. 

Therefore, the total labor cost for all three of us is, 

$14,000

𝑙𝑎𝑏𝑜𝑟𝑒𝑟
∗ 3 𝑙𝑎𝑏𝑜𝑟𝑒𝑟𝑠 = $42,000 

  



18 
 

5. Conclusion 

5.1 Accomplishments 
In terms of individual blocks, we managed to implement all intended blocks except for the Bluetooth 

communication. We managed to set up the microphone array, have it detect the heart sounds and 

convert these sounds into digital readings at the required sample rates. We managed to integrate the 

memory chip and read from it and write to it. We also managed to implement a machine learning model 

on a computer which learnt from a database of heart sounds and classified issues with a peak accuracy 

of 86% and runtime of over 9 seconds, which fall just shy of the initial project requirements.  

5.2 Ethical considerations 
There are a few safety hazards to highlight with our proposed project. Starting from the simplest, there 

is a chance that the battery in the band can overheat, resulting in user discomfort or worse, an 

exploding battery. In order to avoid this, we are taking extra precaution in testing our circuitry in the 

safety lab and making sure the battery does not overcharge. There are a few things we can do to 

improve the safety of out product. For example, we can add a fire retardant chemical to the physical 

band material or use a material that protects the body against heat if the battery starts overheating. 

Both of these, however, can increase irritation, which is explained a few paragraphs below. For the 

scope of our project, we will do our best not to overheat the battery. However, we won’t be providing 

any change in physical design to protect the user just yet. In order to follow IEEE Code of Ethics #1, we 

plan to fully disclose the safety issues with our product [7]. In the future, we hope to work on the 

potential battery hazards once we get the main function of the product working.  

The material of the band is another important concern to the individual using the wearable 

stethoscope.  Certain materials have the ability to induce an allergic reaction or create an uncomfortable 

rash on the individual where the band is placed. To avoid any kind of reaction, we plan on coating the 

device with a gauze bandage. Gauze bandages are prevalent in the medical world and are used 

specifically to protect the body. In order to decrease the chances of getting textile contact dermatitis 

from the gauze bandage, we are using a gauze bandage that is 100% cotton and dye-free [8]. 

The last safety concern we want to highlight is that our device will not be 100% effective. With 

our goal of 90% efficiency, there is a 10% chance that the device fails to detect a lung or heart problem 

for a user that may be completely dependent on the device. The initiative we are taking with this safety 

hazard is ensuring that, again, we follow the IEEE Code of Ethics #3 and to be transparent about the 

product’s success rates as well as the potential flaws mentioned above [7]. The other issue with this is 

receiving too many false alarms. Not only would the doctor receiving the false alarm lose time trying to 

analyze it, but the doctor would be taken away from real-life threatening situations that could be 

occurring at the same time, ultimately decreasing the total quality of care. However, for the safety of 

the patients using our device, we prefer to output more false positives if that prevents more false 

negatives from occurring. In our implementation, a false negative can occur when a new symptom that 

perhaps isn’t in the training data set yet gets fed into the k-NN algorithm where the nearest neighbors 

are normal heart or lung sounds.  We recognize that there are ways to reduce false negatives, for 

example by feeding in more inputs into the microprocessor such as whether the user is sitting or jogging 
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at that moment to further analyze the heart or lung signal. For the scope of this project, reducing false 

negatives won’t be a goal because as we mentioned above, the k-NN algorithm alone should get us an 

accuracy of at least 90% when it comes to detecting the abnormal or normal condition in the user.  

Some studies [10], [11] show that heart rates are directly related to racial or gender differences. 

Although this is just a theory, we want to enforce equality and not segregate heartbeats or lung sounds 

into different groups, essentially following IEEE Code of Ethics #8 [12]. We know that machine learning 

training sets can create bias towards groups. So in order to prevent discrimination, we will continuously 

audit our algorithm and create a standard that works best for our device.  

Because our medical device requires human participants, it’s necessary that we go through the 

Institutional Review Board (IRB).  It’s particularly important because we need to access heartbeat and 

lung sound data from public records.  Although there is an exception for using public data if the subjects 

cannot be identified [13], in order to both connect the public data to any kind of related heart or lung 

illness and to continuously get new data over time, we indeed need to identify the subjects. We do, 

however, qualify for the expedited process because our research is neither invasive and it only requires 

digital voice recordings [13]. 

5.3 Future work 
 

The first thing we will be doing is completing the Bluetooth block of our project. Unfortunately, this part 

of the circuit was shorted on our PCB so we were not able to implement sending data through 

Bluetooth. We will then also implement the receiving end of the Bluetooth signal as well. This would 

allow us to integrate the product into hospitals and doctors offices.  

After that we will turn to optimizing the circuit so that it can be as effective as possible to the user and 

the doctor. The first step would be increasing the size of memory to accommodate the training data. In 

order to do this we would need to take a look at other processors, finding one that has more memory 

but does not cause a substantial increase in power drain.  

Now that we have an effective amount of training data we will be able to optimize our machine learning 

to have a recognition accuracy that’s greater than 90 percent. There are multiple avenues we could take 

to achieve this accuracy. If we were to keep our K-NN algorithm, we could create more classifications, 

which in turn would create greater recognition accuracy. Alternatively, we could create a neural net 

rather than K-NN, which would serve two functions. First, dependent on the amount of data we have, it 

would allow us to get a greater accuracy than 90 percent. Second, it would dramatically increase the 

speed of our processing, allowing us to hit a run-time sufficient with our original requirements.  

 

Once we had increased the memory and improved the speed to below 4 seconds the product would be 

ready for commercial use. From here we would implement the circuit as a wearable. There are multiple 

use cases possible. Two of them include implementing the circuit as part of an underwire in a bra, or 

strap in men, allowing for 24/7 access by the doctor. Another would be for post surgery use where the 

patient is consistently monitored by the hospital for conditions that are acting up. 
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Appendix A Heart Conditions 
Irregular rhythm, heart murmurs, signs of congestive heart failure, fluid in the lungs, valve leakage, 

aortic stenosis, pneumonia, atelectasis, pulmonary fibrosis, acute bronchitis, bronchiectasis, interstitial 

lung disease or post thoracotomy or metastasis ablation, hypersensitivity pneumonitis, alveolitis, 

asthma attacks, though it can also be a symptom of lung cancer, congestive heart failure, and certain 

types of heart diseases, Caused by narrowing of airways, such as in asthma, chronic obstructive 

pulmonary disease, foreign body. epiglottitis, foreign body, laryngeal oedema, crouppertussis (whooping 

cough) pneumonia, pulmonar edema, tuberculosis, bronchitis, inflammation of lung linings, lung tumors, 

pneumomediastinum, pneumopericardium 

https://en.wikipedia.org/wiki/Crackles 

https://en.wikipedia.org/wiki/Auscultation 

https://en.wikipedia.org/wiki/Respiratory_sounds 

https://en.wikipedia.org/wiki/Wheeze 

https://en.wikipedia.org/wiki/Squawk_(sound) 

http://www.who.int/gard/publications/chronic_respiratory_diseases.pdf 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507578/ 

https://www.webmd.com/lung/copd/news/20170929/respiratory-disease-death-rates-have-soared#1 

https://www.healthypeople.gov/2020/topics-objectives/topic/respiratory-diseases 

https://www.ieee.org/about/corporate/governance/p7-8.html 

  

https://en.wikipedia.org/wiki/Crackles
https://en.wikipedia.org/wiki/Auscultation
https://en.wikipedia.org/wiki/Respiratory_sounds
https://en.wikipedia.org/wiki/Wheeze
https://en.wikipedia.org/wiki/Squawk_(sound)
http://www.who.int/gard/publications/chronic_respiratory_diseases.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507578/
https://www.webmd.com/lung/copd/news/20170929/respiratory-disease-death-rates-have-soared#1
https://www.healthypeople.gov/2020/topics-objectives/topic/respiratory-diseases
https://www.ieee.org/about/corporate/governance/p7-8.html
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Appendix B Requirement and Verification Table 
Table 6   System Requirements and Verifications  

Requirement Verification Verification 
status  

(Y or N) 

Microphone Array 

• Have a response in the frequency 
range between 25Hz and 25kHz 

• Operate on 3.3V +/- 0.1V 

• Produce audio through the entire 
range and use an oscilloscope to plot 
the voltage response 

• Attempt to power microphones with 
a Vcc between 3.2V and 3.4V 

Yes 

Power Supply 

• Generate 3.3V +/- 0.1V 

• Can operate at currents 0-200mA 

• Batteries provide 2500mAh of 
power 

• Measure the output voltage from 
the voltage regulator and verify that 
it stays within 3.3V +/- 0.1V 

• Use a constant current circuit to 
draw 200mA from the power supply 
and voltage regulator 

• Connect the battery to a discharging 
circuit. Verify that at the maximum 
current (200mAh), it runs for 12.5 

Yes 

Analog Signal Processing 

• -3dB response below 25Hz and 
above 300Hz for filtering out heart 
sounds. (Figure 1) 

• -3dB response below 50Hz and 
above 2500kHz for filtering out 
lung sounds. (Figure 2) 

• Use signal generator to generate 
signals at 25Hz and below. Measure 
frequency response to verify -3dB 
below. Do the same for signals 
above 300Hz. 

• Use signal generator to generate 
signals at 50Hz and below. Measure 
frequency response to verify -3dB 
below. Do the same for signals 
above 25kHz. 

Yes 

Analog to Digital Converter 

• 10 Bit ADC with 60ksps 

• 8 Analog Input Lines for ADC 

• Generate a signal with Nyquist 
frequency requirement >60Hz. 
Use ADC to look for biasing of 
signal. 

• Generate 8 independent signals. 
Read values converted to digital 
for all signals, compare to input 
signals. 

Yes 

Microprocessor 

• Can receive and transmit 
through UART at a rate of 
>10Mb/s 

• Send a 100 Mb random message 
through the UART port. Verify 
signal received is the same as 

Yes 



23 
 

• Can receive and transmit 
through SPI at a rate of 
>10Mb/s 

signal sent. Verify that it took 
less than 10s. 

• Send a 100 Mb random message 
through the SPI port. Verify 
signal received is the same as 
signal sent. Verify that it took 
less than 10s. 

Memory 

• Write/Program memory at 102 
kbits/s 

• Have a total usable memory of 
> 256 kbit 

• Operate on 3.3V +/- 0.1V 

• Record the time it takes to write 
a large file (~2 MB). Attempt 
multiple times. 

• Try to fill the memory with > 256 
Kbit 

• Attempt to power chip with a 
Vcc between 3.2V and 3.4V 

Yes 

Digital Signal Processing  

• Processor speed needs to be 
larger than 2.8MHz. 

• Complete an FFT transform of a 
measured heartbeat (file size of 
1.4Mbits) in less than half a 
second (which would be the 
processing time for a >2.8MHz 
processor). 

Yes 

Software 

• Classification accuracy of at 
least 90 percent 

• Runtime of 4 seconds 

• Run the algorithm to check for 
speed 

• Run the algorithm to check 
accuracy against training set  

No 

 

 

 


