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Abstract 
The Virtual Grand Piano is a project that utilizes FPGA to generate music notes with varying 
pitch and amplitude controlled by the user’s fingers. Our design uses force sensitive 
resistors to collect how hard the user is pressing on their fingers, each of which is mapped 
to a specific note. The RTL modules on the FPGA board utilize sine tables and clock divider 
to generate the specific frequencies. Then the force data transmitted wirelessly are used to 
calculate the amplitude adjustments.  
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1. Introduction 
 

1.1. Objectives 

Digital pianos currently available in the market are expensive, heavy and non-portable 
devices that require meticulous maintenance and large amounts of power. A piano player 
may require a portable instrument at short notice to practice or test musical pieces without 
wanting to travel all the way to a studio. We plan to explore a possible solution to this 
problem by designing a virtual instrument that contains no moving parts, is extremely 
portable and contains all the functionality and sound design of a digital keyboard. 

We are proposing to implement a virtual keyboard in a glove.  We are planning to do this by 
having the player wear a glove with pressure sensors, and a wireless transmitter on each 
hand. The player can then virtually play the piano with 10 fingers as each finger is 
hardcoded to a corresponding note in the main module.  

1.2. Background 

The digital keyboard is an extremely versatile instrument for any musical artist. It can be 
used as a MIDI controller for a custom synthesizer or as a digital piano that authentically 
reflects the sounds of a traditional piano. It is often the case that an artist may want to test 
out a melody on the fly or practice a piece without having access to a physical keyboard. 
With the increasing sophistication of image processing techniques and fast processing 
times provided by hardware components we are planning to overcome this problem 
completely virtually. The only inputs required by the instrument for emulating a digital 
keyboard are the movements of the player’s fingers. While a flat interface may not provide 
the feel of a traditional piano it could be immensely useful as a portable solution and may 
be set-up in compact spaces that may not accommodate a full piano. It is especially suitable 
as a MIDI controller which has become an essential part of the modern music production 
process [10]. The player’s inputs would be wirelessly transmitted to a central control unit 
that would process the note and velocity of the player’s movements and feed it into an 
audio synthesizer. 
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1.3. High-Level Requirements 

● The system must recognize and trigger the correct note played by the user with the 

appropriate sensitivity reading. 

● The system must be portable and may be deployed on any flat surface if calibrated 

appropriately. 

● The system must be reasonably fast, processing the sensor inputs and triggering the 

appropriate key with minimal delay. 
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2. Design 
There are 2 main components in this design: the main module and the glove module.  

 
Figure 1. Block Diagram 
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2.1 Main Module  
The main module communicate to both of the glove modules, and process the data 
collected from each in order to generate the desired sound. Specifically,  it has the following 
responsibilities:  

1) Produce the digital sound signals for the corresponding notes 
2) Processing the force data collected from the glove module 
3) Use the force data for each finger to adjust the volume of the note being generated 
4) Use audio codec to convert digital sound signal to analog signal, and produce the 

sound through line-out 

 
Figure 2.1 An overview of the physical design of the main module  

As shown in the figure above, the main module consists of the following: 

1) Two XBee RF modules acting as receivers  
2) One Altera DE2-115 development board, of which the followings are used:  

a) WM8731 audio codec  
b) Cyclone IV FPGA chip 
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Digital circuitries are built upon the FPGA chip to facilitate the functionalities described 
above. Each module’s design, configuration and implementation are explained in greater 
detail below.  

 

2.1.1 Cyclone IV FPGA 
The Cyclone IV FPGA chip is used to facilitate the digital circuitries of our project, with 
which the data processing and sound generations are done. The reason for choosing this 
this particular FPGA chip is due to the availability and familiarity of the DE2-115 
development board. The pins/connections used in our design are explained in the 
following table. 

Table 2.1.1 Cyclone IV FPGA Chip Pin/Signal Descriptions 

Pin/Signal Name Pin Number Description  

CLOCK_50 PIN_Y2 50 MHz clock used for all the RTLs 

GPIO[0] PIN_AB22 
Serial communication channel for 

receiver XBee module #1 

GPIO[1] PIN_AC15 
Serial communication channel for 

receiver XBee module #2 

GPIO_3.3V Non Programmable 
Provide power for both of the 

receiverpowerpower XBee modules 

GPIO_GND Non Programmable 
Provide ground for both of the receiver 

XBee module 

AUD_DACLRCK PIN_E3  
Audio codec DAC Left and Right channel 

clock 

AUD_DACDAT  PIN_D1 Audio codec DAC data  

AUD_XCK  PIN_E1 Audio codec control clock 

AUD_BCLK PIN_F2 Audio codec bitstream clock 

 

The compiling and programming of the digital circuitries are done through the Quartus II 
software version 15.0.  The design and implementation details of the digital circuitries are 
explained in section 2.1.4. 
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2.1.2 WM8731 Audio Codec  
WM9831 is needed to convert the digital audio signal into analog signal, which would then 
be sent to line-out and can be listened to with either headphones or speakers.  

In order to use the codec, its’ configurations must be set up correctly corresponding to the 
interface. There are a total of 11 9-bit configuration registers R0, R1, .. , R9 and R15. Each of 
these registers is responsible for one particular area of the configuration, and each bit or 
group of bits corresponds to one setting. Each setting has a default value, and can be 
configured individually through I2C protocol.  

In the case of our design, our RTLs are written so we can work with the default codec 
configuration, which is detailed in table in Appendix B. 

 

2.1.3 XBee Series 1 RF Module (Receiving)  
The XBee is a series of very popular and reliable wireless networking modules by Digi 
International [1]. The module we used in our design is the XBee S1 RF, which is responsible 
for the wireless transmission of the force data from the glove module to the main module.  

There are a total of 4 XBee modules in the whole design, with 2 different roles: transmitters 
and receivers. Each transmitter is paired with a receiver, and each pair communicates the 
force data of 1 glove module to the main module.  

The 2 transmitter XBees are part of the glove modules, used to sample and transmit the 
force data. They will be explained in greater detail under the glove module section.  

The 2 receiver XBees are connected to the FPGA, and responsible for receiving the data 
sent by the corresponding transmitter XBee module. There are 2 receiver XBees, with each 
one paired to a transmitter. Each XBee outputs the data packet it receives through its DOUT 
pin, in the serial UART protocol. The DOUT pins are connected to GPIO pins on the FPGA, 
and FPGA uses UART receiver to receive the data.  

In order to use the XBee modules, they need to be configured and programmed correctly 
through the XCTU software, provided by Digi [2].  

9 



 
Figure 2.1.3 An overview of individual XBee configurations in XCTU. 

To configure the XBee modules as receivers, the following parameters must be 
programmed:  

1) Channel: The pair of transmitter and receiver must share the same channel 
2) Personal Area Network (PAN) ID: The pair must also share the same PAN ID 
3) Destination Address: The source address of the pairing transmitter 
4) Source Address: An arbitrary source address for the current XBee module 
5) Baud Rate: The transmission rate for the UART protocol, must be consistent to the 

rate for the UART receiver on the FPGA.  

All of the above parameters can be arbitrary, as long as consistent throughout the design. 
However, we chose the maximum baud rate of 115200 bps, in order to minimize the 
latency caused by data transmission.  
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2.1.4 Digital Circuitry/RTL design 
The digital circuitries are the largest part of the main module design. The figure below 
shows an overview of the data flow and roles of each module. Specifically, how the analog 
data sampled on the glove modules are transmitted, processed and combined with the 
audio signal data to produce and modify the sound output.  

 
Figure 2.1.4 Data Flowchart 

 
The individual modules and their functionalities are as follows:  

1) UART Receiver: Receive a byte of data from a serial channel with UART  
2) UART Manager: Controls the UART receivers and extract and index the individual 

force data from each finger 
3) Sound Generator: Divide the 50MHz clock to create the 10 desired notes, and 

control the Amplitude Modifiers and Audio Mixers 
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4) Amplitude Modifier: Use the force data for 1 finger to adjust the amplitude of the 
audio signal 

5) Audio Mixer: Mix multiple audio signals together  

2.1.4.1 UART Receiver 

This module samples 8 bits of data from the serial data line every complete cycle, and 
outputs the byte of data to its top level. 

There are 2 inputs and 2 outputs for this module.  

Input:  
● Clock - the 50 MHz clock from the top level 
● Serial Data Line - The channel on which the data will be transmitted and sampled 

by the receiver 
Output:  

● Received Byte - The received byte of data  
● Data Valid - Indicates a whole byte of data has been received  

The design of this module is based on and modified from the online tutorial [4]. It basically 
consists of a clock dividing counter and a state machine with 5 states: IDLE, START, DATA, 
STOP and CLEANUP.  

The IDLE state is the default state, for when there’s no incoming data. The START state is 
when a “start bit” is detected on the serial line (the line goes from high to low), indicating 
the start of the transmission. The DATA state samples 1 bit from the data line each time, 
and is repeated 8 times. The STOP state is entered after the 8 bits of data have been 
sampled, and it waits until the “stop bit” is finished on the serial line (line goes from low to 
high). The CLEANUP state outputs the Data Valid bit, indicating the end of a UART 
transmission. The clock counter is used to wait for the correct number of clock cycles for 
the selected baud rate, before the data line is sampled. The number of clock cycles needed 
to wait is calculated as follows: 

 

Equation 2.1. Calculation of clock divider count for UART receiver 
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2.1.4.2 UART Manager 

The UART manager is responsible for the following functionalities: 

1) Controlling the UART receiver modules to receive the correct number of bytes  
2) Extract the force data corresponding to each finger from the received packets  

The receiver XBee module receives data in the form of data packets separated by each byte, 
and the packets have pre-determined formats identified by the position of the  byte. The 
size and interpretation of the data packet varies according to the configuration. With the 
configuration in our design, as mentioned in 2.1.3, each XBee data packet is 22 bytes long.  

Among the 22 bytes of a packet, we are only interested in the bytes that represent the 
digital data of each FSR. As indicated by the frame interpreter tool in the XCTU software [2], 
each FSR data is 2 bytes long, with the first one located at byte 10 and 11, second one at 
byte 12 and 13, and so on.  

After receiving a complete packet, the XBee module sends the packet to the UART manager 
through the serial data line with UART protocol. The UART manager keeps a counter that 
not only counts how many bytes have been received so far, but also acts as an index for 
where the current byte’s location is.  

Since we are collecting the data from both glove modules, with each having 5 FSRs, we have 
a total of 10 16-bit registers that are used to save and pass the received FSR data. When the 
byte counter/index hits the corresponding location for each FSR, the received byte is 
passed into the corresponding FSR data register. 

After 22 bytes have been received, the UART manager indicates that a whole packet has 
been received and resets the counter.  

2.1.4.3 Sound Generator 

The functionality of the Sound Generator module, as the name suggests, is to generate and 
output digital audio signals of desired pitch and amplitude. 

As an overview, the sound generator creates 10 notes by using 10 sine tables and 10 
different clock dividers to generate 10 sine waves of different frequencies. Moreover, it 
uses 10 Amplitude Modifier (2.1.4.4) modules, to modify the amplitude according to the 10 
FSR data passed in by UART manager. At last, it uses a Audio Mixer (2.1.4.5) to combine the 
signals with modified amplitudes, and generate one output signal. 

The pitch of a note is determined only by the frequency of the sound wave, and the tone is 
determined by the shape of the wave [5].  As a result, we decided to use sine tables with 
different indexing frequencies to generate our notes. Sine tables are look up tables with 
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values that represent a sine function. In our design, the sine tables have 8 bit resolution, 
meaning each sine wave is represented by 256 values. Each sine table is traversed with a 
table index register, and by changing the speed of the traversal, we can generate sine waves 
of any frequency. The number of clock divider cycles needed for any frequency can be 
calculated as follows: 

yclesC = Clock f requency
note f requency × sine table period   

Equation 2.2. Sine table clock dividing cycles calculation 

2.1.4.4 Amplitude Modifier 

The purpose of this module is to modify the amplitude of the a sine wave according to the 
corresponding FSR data. 

To perform the modification, we simply perform a min-max normalization of the sine wave 
value according the FSR data. The FSR value, sampled using the transmitter XBee module’s 
onboard ADC (analog to digital converter) range from 0 to 1023 (0x03FF) [2]. As a result, 
we can calculate the normalized value as follows: 

ormalized riginaln = o × max−min
fsr data−min  

Equation 2.3. Min-Max Normalization for Amplitude Modification 

In order to reduce noise, we introduced a threshold for the FSR data. If the FSR data is 
below the threshold, the corresponding finger is counted as unpressed. The value is 
determined by the user according to the specific hardware, since every resistor might 
perform slightly differently. For signals with FSR data below the threshold, we simply mute 
them by assigning 0 to the output signal.  

2.1.4.5 Audio Mixer  

Since the audio codec only takes one signal at a time, we need to mix the audio signals in 
order to play multiple notes simultaneously.  

The audio mixing is done by adding the values of multiple sine waves together. The 
resulting waves look similar to the figure below. 
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Figure 2.1.4.2 Resulting wave of sin(10x)+sin(6x) 

However, the resulting signal’s amplitude needs to be adjusted in order to avoid overflow. 
We first tone down individual signals that have FSR value above the threshold by 50%, by 
multiplying 0.5 to the individual signal. Then we tone down the overall signal’s amplitude 
by 20% similarly. At last, if the resulting signal is still above the max value of 1023, we clip 
the value by assigning it as 1023.  

 

2.1.5 Voltage Regulation Unit for Main Module 
Another voltage regulation unit is designed to supply correct amount of voltage to the main 
module. Unlike we used single voltage regulator chip for glove module, implementation of 
the voltage regulation unit for the main module includes multiple regulators with added 
complexity. In the Main module, the voltage regulator unit is designed to create different 
voltages as suggested in the table 4 below. Instead of having parallelly listed voltage 
regulators that create different voltage output. Some of the smaller voltages were created 
making use of larger regulated voltage as an input.  

3.3V output, used to supply voltage to FPGA, WM8731 Codec and Xbee receiver, was 
created using the same network that we used in the glove module voltage regulator unit. 
Other voltage inputs like 2.5 V, 1.8V or 1.2V were created using a switching voltage 
controller chip LM3150 and a linear voltage regulator LP38692 along with rectifier 
IRF7455. In order to obtain a reliable network various choice of capacitors were used in 
the circuit in addition to various resistors. The network refers to the voltage network 
circuit of the DE2-115 Development board voltage regulator units since FPGA and audio 
codec in our design possess identical specification to that of DE2 Development board.  
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Components Requirements Observations Error ratings 

XBee RF module 3.3V 3.310V 0.3% 

WM8731 Codec 3.3V 3.310V 0.3% 

FPGA(VCCINT) 1.2V 1.219V 1.6% 

FPGA(VCCIO 3.3V) 3.3V 3.317V 0.5% 

FPGA(VCCIO 1.8 V) 1.8V 1.810V 0.6% 

FPGA(VCCA) 2.5V 2.508V 0.3% 

FPGA(VCCD_PLL) 1.2V 1.219V 1.6% 

Table 2.1.5 Voltage Requirements and observed Voltages of Main Module 

The observation of the output voltage of the voltage regulator unit was tested using 
prototypes of each segments providing 12V output from the oscilloscope. However, it was 
not testable to check whether the voltage supply was correctly supplying the suggested 
voltage shown in table in actual PCB prototype. Constraints could vary from error ratings of 
resistors, wrong path in the pcb design, to current ratings. However, since the design itself 
is nearly identical to that of DE2 board power supply, the components, and the design was 
not considered as a factor of failure of the main module. While reviewing the design of PCB, 
we could observe that some of the path were closed in the schematics however were open 
in the actual pcb design due to overlapping wires. Perhaps, this could have led to failure or 
short of main module itself in the end, and stopped us from confirming the tested result in 
our actual hardware module.  

The figures below is part of our main module schematics that is responsible for supplying 
voltage to different components. For LM3150 output voltage calculation, following 
equation was used. 

  V  V  )out =  fb × ( Rfb1

(R  +R )fb2 fb1

   
 

Equation 2.4. LM3150 Voltage Output Calculation 

Here, Rfb1 and fb2 refers to two of the right most resistors, Rfb1 being the one connected 
to the ground and Rfb2 being the one parallely connected to the capacitor of 1.2nF, and 
390pF respectively. 
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Figure 6. LM3150 (12V input to 1.2V output) 

 

Figure 7. LM3150(12V input to 3.3V output) 
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Figure 8. LP38692(LM3150 3.3V input to 2.5V , 1.8V output) 

 

  

18 



2.2 Glove Module  
The glove Module is responsible for wirelessly transmitting the pressure data of fingers to 
the main module, in a digital form.  First, the glove recognizes user’s finger pressure from 
five different fingers, then at a optimum resolution, this finger pressure is be translated 
into several different levels of analog signal. After analog signal is generated, this analog 
signal then flows into five Analog to Digital converting unit of Xbee. Using XBee 
communication, the digital data packet is then transmitted to the receiver in the main 
module.  

 

Figure 9. Overview of the glove module’s physical design  

 

2.2.1 Force Sensitive Resistor (SEN-09375) 
For sensing pressure of user’s fingers, five force sensitive resistors,(SEN-09375), were used 
in each glove.  The goal of using these resistors is to provide different voltage values into 
ADC of xbees at high resolution in order to differentiate the pressure of the user’s finger on 
to the sensor. First of all, the maximum output from the FSR network shall not exceed 3.3V 
+/- 0.3V since this is the required specification of the XBee. Therefore, 3.3 V output voltage 
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from the voltage regulation unit is used to supply voltage to the FSR sub-circuitry. Then in 
order to achieve the maximum resolution rating following equation was used to calculate 
the reference resistance.  

Rref  f sr, in   = R m × √( )Rfsr,min
Rfsr,max  

Equation 2.5 Finding reference Resistance 

Although the resistance of FSR varies from 0 to 1M Ohms depending on the pressure, 
using the entire range of resistance was not an efficient way to create resolution that 
suits for playing piano. Therefore, the calculation  only considered range of (600 Ohms, 
600 KOhms ) where 600 Ohms is minimum resistance of FSR at maximum pressure, 
and 600K Ohms is maximum resistance when nearly no pressure was detected. After 
calculation, preferred resistance turned out to be about 20 KOhms.  

After finding the appropriate reference resistance, the resistance was used in 
combination with FSR to create different level of voltage outputs based on the 
resistance of the FSR using simple voltage divider. Although voltage divider 
implementation possesses limitation as the range of the voltage is not entirely linear, 
as we decided to make threshold pressure at 100~200g (0x0100), such nonlinearity was 
not a concern.   

out inV = V × Rref
(Rref+Rfsr)  

Equation 2.6 Voltage Divider 

 

 The Below figure shows the voltage response of FSR with different reference 
resistance value, by looking at the graphs, we can observe that most of the response 
are nearly linear after 200g of pressure. However, it was hard to map and plot the 
actual voltage variation using 20K ohms and our FSR. as the rate of change was to fast, 
the actual resolution and response was hard to observe. Instead, we instead tested the 
resolution by hearing to the sound output.  At Lower resolution, the pressure sensor 
could not differentiate the pressure, and hence the volume of sound did not vary 
greatly. In other words, fromm the smallest to largest volume, the difference was not 
very recognizable. However, with 20K Ohms resistance, we could easily tell the 
difference between different pressures as the sound got louder or smaller depending 
on the finger pressure.  
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Figure 10. Voltage response of FSR 

 

FSR Resistance(Ohms) Analog Voltage (V) Digital Value Applied Force(g) 

R >1M Ohms 0V 0x000 0 

R < 300 Ohms 3.3V 0x3FFF ~10,000g 

Table 2.3 

 

Following schematic shows how force sensitive resistor is connected to xbee. 
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Figure 11. FSR to XBee 

2.2.2 XBee Series 1 RF Module (Transmitting)  
There are one transmitter XBee module on each of the glove modules. Similar to 2.1.3, the 
modules are configured through the XCTU software. They are configured to sample the 
analog data from each FSR, convert them to digital data then transmit them to the pairing 
receiver XBee modules.  

Each transmitter XBee module is configured as follows: 

● Channel: The pair of transmitter and receiver must share the same channel 
● Personal Area Network (PAN) ID: The pair must also share the same PAN ID 
● Destination Address: The source address of the pairing receiver 
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● Source Address: An arbitrary source address for the current XBee module 
● DI0...DI4: 5 input pins configured as ADCs, connected to each of the FSR 
● Sampling Rate: Maximum sampling rate of 1 kHz is selected in order to minimize 

latency  

 

2.2.3 Voltage Regulation Unit 
Throughout our design of modules, the supply voltage requirement varies. 

Our gloves module makes use of single 9-V battery per module, and our main module was 
designed to have 12V power supply initially. However, within the module, 
sub-components(Xbee, Cyclone IV FPGA, WM8731 Codec) have different input voltage 
requirements. In order to provide the necessary voltage to each of components, the design 
makes use of more than one design of voltage regulator circuit. 

2.2.3 Voltage Regulation Unit for glove Module 
First, a single glove module is composed of a battery, voltage regulator unit, xbee, and 
Force sensitive resistor network using voltage dividers.  

Whereas the Xbee’s input voltage and reference voltage strictly requires 3.3V, having 
minimal  room for error is very crucial for correctly operating the xbee.  

In order to provide 3.3V to XBee, LM317, an adjustable voltage regulator was used with 
single 0.1uF capacitor, a choice of resistor of R1(240 Ohms), 1uF capacitor, and a 1K Ohms 
Potentiometer. The design made use of potentiometer in order to calibrate the resistance 
while looking at the output voltage instead of simply relying on the equation to generate 
the precise output. According to equation 3 below,  the voltage output depends on the ratio 
of R2 to R1. However, even though we have used 240 Ohms resistor for our design, the 
actual resistance of  the resistor could vary. Since small difference of the fixed resistor 
values could discourage the regulator unit from creating 3.3V output, potentiometer was 
used to minimize the errors. After several adjustment, the potentiometer was adjusted to 
within range of 390 +/- 3% Ohms for both modules.  

 

Theoretically, according to equation 3  at choice of 240 Ohms for R1, and choice of 393 
Ohms should result in 3.3 Ohms since Iadj is negligible current flowing through the chip.  

 
Equation 2.7 LM317 Output Voltage Calculation 
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However, as the below table suggests, 3% to 5% errors in registers makes the circuit 
unreliable for creating precise 3.3V output. So, instead, by looking at the oscilloscope, we 
adjusted R2 until we found acceptable range of voltage. Such observed R2 values were 
noted in the following table. 

 

Vout R1(240 Ohms) R2(1K-Pot) R2(390 Ohms) 

3.24+/- 0.2 233 Ohms 382 Ohms 371 Ohms 

3.303 +/- 0.02 233 Ohms Not Measured X 

3.25+/- 0.2 234 Ohms X 375 Ohms 

3.309 +/- 0.02 234 Ohms 385 Ohms X 

Table 2.4 

 

The schematics below shows how the LM317 chip, capacitors and resistors were used for 
designing the voltage regulation unit for glove module.  

Figure 2.2.3. Eagle Schematics for LM317 Voltage Regulator 
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3. Design Verification 
Each subsection of section 3 discusses the verification processes and results for each 
individual module. Refer to appendix A for more detail regarding the requirements and 
verifications of the specific module. 

3.1  Main Module 

3.1.1 Cyclone IV FPGA  
As mentioned in 2.1.1, the RTL modules are compiled and programmed to the FPGA chip 
through Quartus II and the USB Blaster. When connected to the PC through USB, the USB 
Blaster works as intended and programs the chip successfully through Quartus II. 

The functionalities of the digital circuitries, as mentioned in 2.1.4, can only be verified after 
programming them onto the FPGA chip. Refer to Appendix A for further details. 

The FPGA should be able to receive the FSR data through the XBee module. The pipeline 
and implementation is explained in 2.1.4.1 and 2.1.4.2. In order to verify this functionality, 
we mapped the received data to the onboard 7-segment hex display of the DE2-115 board.  

The FPGA should also be able to generate notes of required frequencies, it is verified by 
listening to the sound output and showing the output waveform on the oscilloscope. 

3.1.2 WM8731 Audio Codec 
The audio codec is responsible for converting the 16-bit digital audio signal to analog 
signal, and outputting them through line out. To verify this functionality, we connected the 
line out to a separate speaker, and we were able to hear the desired note being generated. 
Moreover, we can connect the line out to the oscilloscope and look at the sound wave being 
generated. The figure below shows an sine wave of 1 kHz frequency being generated.  
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Figure 3.1.2 Image of 1kHz Sine Wave Captured at Oscilloscope 

3.1.3 XBee S1 RF Modules 
With the help of the XCTU software’s terminal tool, real time XBee communication can be 
visualized, as shown in the figure below. Being able to visualize the communication makes 
it easy to verify the reliability as well as the contents of data transmission  

 
Figure 3.1.3 XCTU XBee Communication Terminal 

The first requirements for the XBee is its transmission reliability. It needs to sustain 
transmission with a reasonable range of at least two meters. It was verified by starting 
arbitrary continuous transmission with the two XBee modules next to each other, and 
slowly moving them away until they are about two meters apart. The data transmission 
was undisturbed. 

3.1.4 Voltage Regulation Unit 
Voltage regulation unit in the main module used test method that is similar to test method 
we used for Similar to the voltage regulation unit of glove module. Although using xbee 
shield for testing was limited to 3.3 V, other output voltages could still be tested using the 
oscilloscope. For all output voltage values of 1.2V ,1.8V, 2.5, and 3.3V had extremely low 
rate of error, at less than 2%. (table 2.2) 

 

3.2 Glove Module 

3.2.1 LM317 Voltage Regulator Unit 
The glove module’s functionality was tested using several methods. First, the voltage 
regulator subcircuit is responsible for generating 3.3V output voltage. In order to check 
that the subcircuit is generating correct output, oscilloscope was used to check the output 
voltage at the output node of the regulator circuit. Then, as acceptable output value was 
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observed, we checked whether the light on the XBee lights up or not. With correct input 
voltage, red light on the XBee shield blinks. After several trials, we could finally observe the 
light blinking continuously, and could confirm that the voltage regulator Unit is generating 
correct output.  

3.2.2 Force Sensitive Resistor (FSR) 
Once the circuit is provided with appropriate voltage, the analog signal fed into analog to 
digital converters of XBee should be converted into digital values. When no pressure was 
applied, voltage that we observed on the oscilloscope was closed to 0V, and as pressure 
was added, the voltage kept increasing until it reached 3.3V. Then, to check whether these 
values are correctly interpreted into digital signals, we started again from 0 pressure and 
slowly increased pressure to the maximum. This time, instead of looking at the 
oscilloscope, we used XCTU to visualize the digital data, which is converted from the analog 
signal that FSR circuitry has created. As the pressure increased, we could observe digital 
value increasing, and when the maximum pressure was applied, the digital value reached 
0x3FFF the largest digital value that XBee ADC could represent.  
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4. Costs 

4.1 Parts 
Table 4.1 Parts Costs 

Part Quantity Manufacturer Unit Price 
($) 

Actual Cost 
($) 

Perforated Board  3  JCLPCB  1.62  4.86 
Main Module PCB 1st 

Tria 
5  Unnamed Chinese 

Manufacturer 
3.40  15.40 

Main Module PCB 2nd 
Trial 

10  Unnamed Chinese 
Manufacturer 

10  100 

Glove Module PCB   5  Unnamed Chinese 
Manufacturer 

5  25 

Sen-09375 FSR-400 (10)  10  Interlink  6.95  89.21 
XBee  4  Digi international  25  100 

WM8731 CLSEFL  2  Cirrus Logic  3.64  7.28 
LM317LD  10  On Semiconductor  0.354  3.54 

ADA 4627-1  12  Analog Devices  7.761  93.13 
Arduino for Xbee  2  Elemgo  10  20 

CB3LV-3I-27M0000  2  CTS Electronic 
Components 

1.35  2.7 

CB3LV-3I-50M0000  2  CTS Electronic 
Components 

1.11  2.22 

9V Battery Snaps & 
Contacts 9V Battery 
Snaps & Contacts 4" 

BATTERY SNAP 

4  Keystone Electronics  0.70  2.8 

EP4CE6EE22C8N  2  Altera  11.95  23.9 
33DCJ-0202-A  2  CONEC  0.73  1.46 

35RASMT2BHNTRX  2  Switchcraft INC  0.92  1.84 
IRF7455PBF 

 
6  Infineon Technologies  1.43  8.58 

LP38692MP-ADJ/NOPB 
 

3  TI  1.58  4.74 

LM3150-500 EVAL  2  TI  25.96  51.92 
M/F JUMPER WIRES    36  N/A  0.30  10.80 

Shipping and 
miscellaneous 

N/A  N/A  N/A  80.24 

Total    649.62 
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https://www.mouser.com/ProductDetail/238-WM8731CLSEFL
https://www.mouser.com/ProductDetail/774-CB3LV-3I-27M0
https://www.mouser.com/ProductDetail/774-CB3LV-3I-50M0000
https://www.mouser.com/ProductDetail/534-232
https://www.mouser.com/ProductDetail/534-232
https://www.mouser.com/ProductDetail/534-232
https://www.mouser.com/ProductDetail/534-232
http://d.digikey.com/FYjXN00YLlS0O0t0000K7p2
http://d.digikey.com/p0200SlYMK000ZpX7N0Ojt0
http://d.digikey.com/c02l00OS0NpX0Y7KO0j0u00
http://d.digikey.com/u1p000jX2N07lP00uO0SKY0


 

4.2 Labor 
Table 4.2 Costs of Labor 

Participant Hourly Wage ($) Estimated Time (hr) Total ($) 

Zhi Lu 20 150 3000 

Jeongsub Lee 20 150 3000 

Sum: 6000 
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5. Conclusion 

5.1 Accomplishments 
In fact, we have gone through unexpected difficulties while working on the project. One of 
our teammate left the team, and part of work that he was responsible for remained empty. 
However, after serious considerations, the current project came up as an alternative to the 
original design that we projected. Our design was able to play 10 different notes with 10 
different fingers. We could also control the volume of the notes that we play by applying 
different pressure using fingers. Moreover, the wireless communication of our main 
module and glove module was reliable within 2 meter range.  

5.2 Uncertainties 
Our biggest uncertainty regarding this project is its flexibility. Since our design only has 10 
notes, it only covers a little more than a whole octave. We worry about the limited number 
of songs that the user is able to play with only 10 note. However, with more hardware 
components, such as a button, and software adjustments, we can add the functionality of 
changing the octave mapped to the FSRs. 

5.3 Ethical considerations 
As our project makes use of RF signal transmission and reception, we must abide by FCC 
regulations. This may result in problems such as jamming signals, which can be illegal.  

In addition, Since we will very likely be dealing with copyrighted music, we will make sure 
that what we do comply with the Digital Millennium Copyright Act (DMCA). 

Finally, to comply with IEEE Code of Ethics #1, “to strive to comply with...sustainable 
development practices” [9]. it is our best interest to use materials that are sustainably 
sourced or recycled 

5.4 Further work 
Our original goal of this project to replicate most of the features of a piano. This includes 
extended range of keyboard, piano like sound, piano like amplitude modification.  

Currently, the design does not have the virtual keyboard. With visualized virtual keyboard, 
users will be able to play extended range of notes. Instead of using seperate camera 
module, the virtual keyboard could also be made using webcams on laptops or computers. 
As the webcam detects the location of our finger, we can use frequency library as we did for 
10 fingers, to play the corresponding note. Adding this functionality will increase the 
design’s utility by great amount. 
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Moreover, the current design does not give a piano-like touch to users. Change in pressure 
does modify the amplitude however, the only way of understanding how much pressure 
one exerted on the key is by listening to sound. Use of springs, or electromagnetic force 
with varying current may create feedback of the input pressure and provide more 
piano-like touch to users. 
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Appendix A Requirement and Verification Tables 
Table A.1. Cyclone IV FPGA Requirements and Verifications 

Requirement  Verification 

Should be able to process data captured from 
OV7670 camera sensor in the image buffer at 
a rate of at least 30 frames per second (222 
Mbps). 

Cyclone IV internal clock frequency is20 MHz 
and should be able to process data in parallel 
for our design. This maximum frequency can 
be verified on the Quartus timing analysis 
report. 
 

Should be able to store image data captured 
in a frame buffer and relay it to a VGA 
controller at 30fps. 

The Cyclone device will be interfaced with an 
off-chip 128 Mb SDRAM with a max clock 
frequency of 127 MHz. This should be 
adequate to store image data. The transfer 
speed on the SDRAM can also be verified 
through Quartus timing analysis. 

Should be able to configure the FPGA SRAM 
logic elements in JTAG configuration with the 
host PC. 

We can verify proper configuration by 
analyzing the uploaded bitstream on Quartus. 

Should be able to receive pressure sensor 
data from the XBee receiver at a rate of 16 

Verify communication with XBee controller on 
the FPGA is working as specified in the 
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Kbps for required resolution.  datasheet through debugging tools in 
Quartus. 

Waveform generator must be able to provide 
16 bit digital audio samples generated at a 
PWM frequency to codec to output the 
required analog waveform. 

The correct functionality can be verified by 
testing on a line out speaker or through 
debugging tools in Quartus. 
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Table A.2. Force Sensitive Resistor Requirement and Verification 

Requirement Verification 

FSR is connected to reference resistor 
Rref. In order to map the voltage range we 
want to have, we first need to check the 
varying resistance of FSR. 

Ohm-meter was used to to check varying 
resistance of FSR from ~0 Ohms to 1.2 
MOhms. However, from 500K ohms to 1.2 
M Ohms, change was so quick that 1.2 M 
Ohms is not ideal to be used as maximum 
resistance.  

XBee module has range of analog input 
that won’t be cut off. The Maximum is 
nearly the VCC+0.3V of the XBEE module 
which is going to be 3.6V in our design. 
Therefore, resulting voltage output from 
the voltage divider should not exceed 3.6V 
for proper mapping of voltages.  

Input to the voltage divider circuit is 3.3V, 
identical to reference voltage input of Xbee. 
As the Voltage divider cannot create output 
greater than input, the analog signal to Xbee 
will always be smaller than 3.3V 

Force Sensitive Resistor Module is part of 
glove module and it is required to be 
mobile. In that sense, the entire module 
needs to be powered by battery. The 
battery should be able to supply 3.3V to 
Xbee module and FSR and finger 
reflectors. We use 9V Batteries. 

9V battery output is checked using 
oscilloscope before plugging it into glove 
module. 

All of FSRs needs to have same voltage and 
approximately 3.3V. Otherwise, the 
pressure data may not be reliable. 
Moreover, maximum output of all FSR 
should also be close 3.3V.  

Used 3.3V voltage regulator circuit using 
LM317 chip. The output voltage of regulator 
was 3.302, read by oscilloscope. The 
voltages at all ADCs were also nearly 3.3 
when maximum pressure was applied. 

For proper voltage mapping and greater 
sensitivity, we need to have linear 
response with broad range of voltage 
outputs, and any nonlinearity should be 
removed. 

Any non-linear region was removed by 
setting the threshold after non-linear 
region. Used 20K Ohms resistors to have 
FSRs perform at best resolution. 
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Table A.3 Voltage Regulation Unit Requirements and Verifications 

Requirement Verification 

LM317 shall convert 12V and 9V battery 
input into 3.3 V for main module and glove 
module.(table 3) 

The output voltage of LM317 voltage 
regulation unit at output node read as 
3.32V +/-1% using oscilloscope.  

FPGA requires 4 different values of input 
voltages: 1.2V, 1.8V, 2.5, and 3.3 V. Using 
LM3150, and LP38692, a voltage regulator 
circuit should provide 4 above 
voltages.(table 4.)  

LM3150 creates two different voltages 1.2 
and 3.3V. The voltage value read at output 
node was in range of less than 2% error 
rating. LP38692 converts 3.3V into 1.7 and 
2.5V. Here as well, the error rating was less 
2%. (table 4.) 

LM3150’s minimum input voltage is 6V, 
and maximum input voltage is 42V. Any 
voltage input to LM3150 should be in this 
range. 

We are using 12V external power supply. 
12V is within the range.  

LM317’s minimum input voltage is 1.25V, 
and maximum input voltage is 37V. Any 
voltage input to LM317 should be in this 
range. 

We are using 9V Battery. Batteries that we 
used were proven that they provide 9V 
using oscilloscope. 

 LP38692’s minimum input voltage is 2.7V, 
and maximum input voltage is 10V. Any 
voltage input to LP38692 should be in this 
range. 

 LP38692’s input voltage is the 3.3V output 
from the LM3150.  

 

Table A.4 WM8731 Audio Codec Requirements and Verifications 

Requirement  Verification 

Should be able to receive digital samples at a 
modulated frequency from the FPGA 
waveform generator and produce a 
corresponding analog signal. 

This can be verified separately from the FPGA 
by sending 16 bit samples at different 
frequencies for different waveforms and 
verifying the analog output through a 
speaker. 

Should be able to process input digital 
samples at a high frequency required for 
frequency response of piano notes. 

Sampling rates from 8 kHz to 96kHz are 
accepted by the codec and can be verified 
similar to above by testing analog output. 
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Table x. XBee RF Module Requirements and Verifications 

Requirement Verification 

Transmit data within at least 
2 meters reliably. 

1. Set up the transmitter and receiver with the transmitter 
connected to the FSRs, and receiver connected to the 
microcontroller and hooked up to the FPGA.  
2. Move the transmitter around the receiver within a 2m 
radius. Check the data reading through the FPGA. 

Convert the analog data from 
the pressure sensors 
(SEN-09375) to digital using 
on-board ADCs. 

1. Same as step 1 from above. Make sure the transmitter 
and receiver are working properly.  
2. Press the FSRs, and make sure the data read on the 
FPGA is correct. 

Transmit data at 80 Kbps for 
the processing of pressure 
sensor readings 

1. Connect both of the transmitting and receiving XBee 
modules to Arduinos, which will be connected to a PC.  
2. Use the XCTU software by Digi, send payloads of 
predetermined size through the Xbee network, and 
calculate the performance. 
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Appendix B Audio Codec Configurations with Description 

Table B.1 WM8731 Audio Codec Configurations with Description 

Register Name Register Value  Description  

R0: Left Line In 
R1: Right Line In 

010010111 
Simultaneous Load, Enable Line Input Mute, Input 

Volume at 0dB 

R2: Left Headphone Out 
R3: Right Headphone Out 

001111001 
Disable Simultaneous Load, Disable Zero Cross, 

Output Volume 6dB 

Analogue Audio Path 
Control 

000001010 
Sidetone Attenuation -6dB, Disable Sidetone, Don’t 

select DAC, Enable Bypass 

Digital Audio Path Control 000001000 
Clear dc offset, DAC softmute, De-emphasis 

control, Enable High Pass Filter 

Power Down Control 000000000 Disable Power-down 

Digital Audio Interface 
Format 

000001010 
I2S format for audio data, 16 bits audio data bit 

length 

Sampling Control 000000000 Disable clock out divider, Normal sampling mode 

Active Control 000000000 Activate interface 

Reset Register 000000000 No reset 
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