

Real-Time Free Throw Feedback Device

Team 22
Final Report

Sanjay Kalidindi (kalidnd2)

Mathew Kizhakkadathu (kizhakk2)
Joseph Vande Vusse (vandevu2)

TA: Hershel Rege (davereg2)

May 2018

1

Abstract

We intend to showcase our device as an attempt to aid individuals in performing
fundamentally sound athletic practice without the aid of a coach, a camera, or other
players to critique form. With our limited time, we chose to apply this theme to free
throw shooting in basketball as it is a relatively simply motion that can be characterized
well with only two sensors. These sensors were accelerometers positioned atop an
individual’s wrist to measure the degree to which the wrist was flicked and on the lower
thigh to measure the degree to which the legs were bent. The maximum acceleration
values over a five-second polling cycle, along with the corresponding label of make or
miss, are passed to the microcontroller, a Bluetooth module, and finally a computer.
This shot data is compiled in a text file. Then a machine learning clustering algorithm is
applied to it to generate user feedback.

2

3

1 Introduction

Imagine you are an amateur basketball player who likes to play occasionally. You
decide you want to improve your game, but you do not want to spend much money on
private training sessions. You are not left with many options to receive feedback on your
shots. Motions capture systems are readily available to give advice on your shots but
cost upwards of $20,000. Wearable devices are available to professional athletes to
improve their game but, unfortunately, are very costly also. Therefore, we have
proposed a cheap, alternative solution for an amateur basketball player to receive
feedback on his/her shot.

1.1 Objective

We came up with a wearable device under $100 to give feedback on a user’s free
throw. The wearable device consists of two accelerometers connected to a
microcontroller. Then, a bluetooth module takes the data extracted from the the
accelerometers and transfers it to a computer where we would run a support vector
machine algorithm to analyze the acceleration values taken during many shots. After
the shot is taken, the user can look at their computer and receive feedback on how to
improve their next free throw. Essentially, we have enabled the user to receive feedback
on their shot quickly without a coach or trainer being present based on previous
successful shots.

1.2 Background

Numerous technologies currently exist on the market which sports enthusiasts use to
improve their shots. The problem with these products is that they are targeted towards
professionals which makes it very difficult, for example, a juvenile athlete trying to
improve his/her game to make the high school team. One of the existing technologies
on the market is the Wilson X. The Wilson X is a basketball that is designed with a chip
that relays statistics back to a user when the user shoots [1]. The problem with this
device is that is does not provide feedback which our product does. We believe that
outputting feedback to a user is much more valuable than simply relaying statistics back
to a user.

4

The Noah Basketball Shooting system is another analytical tool for basketball players to
try and improve their game. Regardless of whether or not it works, it costs $6,000 [3].
This is not a realistic price tag for the majority of amateurs.

Many of our competitors who already have products on the market try to improve a
user’s shot by analyzing the shooter’s arm angle and arc of the ball’s path. We believe
that the way we are analyzing a user with accelerations, we can provide unique and
meaningful feedback to our user.

1.3 High-Level Requirements List

● Sensor circuits and microcontroller must be fastened to the user to be considered
a wearable device

● System must be affordable for any amateur (≤ $100)
● Entire data transfer from analog sensor data to computer script performing

high-level functions and display results must occur in ≤ 5 s to live up to
“real-time” name

Figure 1.3.1: Physical prototype

5

2 Design

2.1 Block Diagram

The block diagram below gives an overview of the high-level details of our device. As
we can see on the diagram, our project was split up into three main modules: the power
module, the control unit module, and the sensing module. The power module consists of
all the necessary components needed to power our entire project. The control unit
consists of the microcontroller and illustrates the transfer of data to the Bluetooth where
it is then relayed then to the computer. The sensing module illustrates how the sensor is
powered with a voltage divider which steps down the voltage to 3.3V (a requirement for
the accelerometers to function.

This block diagram for the most part is similar to the one we originally designed in our
design document with some minor adjustments. The control unit and sensing module
remained the exact same as before; however, some minor adjustments were made to
the power module. Originally, we planned on using watch batteries to generate 6V of
power and then use a buck converter to step down the voltage. Insead, we ended up
using a 9V alkaline battery and a 5V regulator to supply power for the ATmega and the
Bluetooth module [12]. The reason for this change was for the sake of simplicity and
also to reduce the space it would take up on our PCB. Using two coin batteries in series
would require the usage of two coin holders as well which would increase the
complexity of the design, increasing the chances of issues arising [6]. As a result, a 9V
alkaline battery was used. For similar reasons described above, we decided to switch
out the buck converter for a 5V regulator. In addition to these changes, we also
implemented a voltage divider in order to step down the voltage from approximately
4.6V to 3.3V which is what the accelerometers needed to function.

6

Figure 2.1.1: Device block diagram

2.2 Physical Diagram

In our original design, we had accelerometers placed on the wrist and calf areas. We
assumed placing a sensor on the wrist would be the most accurate. The accelerometer
on the calf would tell us how quickly the user was squatting with their lowering body.
Then, we would be able to tell the user for their next shot if they needed to use more or
less legs. The only change we implemented for the physical diagram is that, rather than
placing an accelerometer on the individual’s calf or shin, we placed it on his/her thigh
instead. The reason is when gathering data we found that there was a greater range of
motion on an individual's thigh compared to the calf/shin area. As a result, we were
getting more variation in data when using the thigh.Therefore, we changed our final
design accordingly. The final physical diagram for the project was also very similar to
what we had envisioned in the design document. We decided to go forward and collect
all our data with the accelerometer attached to the individual’s thigh. The microcontroller
and second accelerometer we kept attached to the wrist and waist as we envisioned
previously.

7

Figure 2.2.1: Sensor/MCU locations on user

2.3 Power Module

2.3.1 Battery

As mentioned in the block diagram above, we originally planned on using two 3V coin
batteries in order to power our entire device. However, to simplify our design and
conserve space, we decided to switch to a 9V alkaline battery. Conserving space on the
PCB is important as we want to produce a product that is compact and easy for the user
to attach to his/her body. Therefore, even changes that conserve something as small as
several inches in total space can be significant.

2.3.2 DC/DC Buck Converter (Voltage Regulator/Divider)

A DC/DC buck converter is a converter which simply takes a voltage from a source and
steps it down to a smaller value while at the same time increasing the current. This
characteristic of the buck made it perfect for our design. However, similar to what we
stated in section 2.3.1, we decided to change our design from a DC/DC buck converter
to a voltage regulator and voltage divider to conserve as much space as possible.
Implementing our design with a small voltage regulator and a simple voltage divider
would save considerable space compared to implementing two DC/DC buck converters
[12].

8

2.3.3 Bluetooth Module

In the design document of our project, we mentioned we would need 3.1V to power our
Bluetooth module. On the datasheet, the minimum voltage required to power the device
was 3.1V. However, this changed when we started designing our circuit. Rather than
powering it with 3.1V, we decided to power it with 5V. The reason why we decided to
power the Bluetooth module with 5V was when we first started to test our Bluetooth
module with an Arduino, we fed it with the 5V pin on the Arduino. Therefore, we decided
to keep consistent with the previous build and continue to use 5V as an input when we
put together our PCB.

2.3.4 Sensing Module

Similar to the Bluetooth module, we provided a different amount of voltage to power the
accelerometers for our project compared to what we initially mentioned in our design
document. In the datasheet for the accelerometers, the necessary voltage to power the
sensors were between 1.8V and 3.6V. Hence, we planned to use 1.8V to power the
sensors. However, similar to the Bluetooth module, we tested our accelerometers with
an Arduino. The Arduino powered the sensors with the 3.3V pin. To keep consistent, we
decided to continue to use 3.3V to power the sensors.

2.4 Control Unit

2.4.1 Microcontroller

After some deliberation, we ended up using the ATmega328P-PU instead of our original
ATmega328P-AN. The decision revolved primarily around requiring a through hole part
as opposed to a surface mount one for our PCB. The ATmega328P-PU is the exact
chip used on the Arduino Uno [9]. We assumed this would be a natural transition as our
initial tests with the Arduino Uno were successful.

Once we gained some experience with Arduino programming, we were confident in our
decision to abandon the requirement of storing 24 KB of data in flash memory. We
instead chose to keep track of the maximum accelerations during the polling cycle and
pass that data to the Bluetooth module directly. We were able to avoid this requirement
with no loss of functionality.

9

Despite an initial misunderstanding to what data the accelerometers were displaying to
us, we continued to use the maximum acceleration values as our data from a given poll.
The data ended up being more of a measure of the amount of flexion in an individual’s
wrist or leg versus the acceleration of that body part. The degree of flexion is not
unrelated to acceleration or force of a given body part. Hence, the data we gathered
was just as useful as we originally intended.

2.4.2 Analog-to-Digital Converter

Our ATmega’s built-in ADC was not something we ended up having to tweak to any
substantial degree. Properly configuring the hardware and software around it was all
that was necessary for its functionality. The hardware setup involved properly
establishing a 16 MHz external clock signal via a crystal oscillator and protecting both
its corresponding pins and the AVCC pin with capacitors. The software setup required
beginning the Arduino code at the proper band rate corresponding to 16 MHz. After
setup, the Arduino analogRead() function was all that was necessary to convert the
accelerometers’ analog signals to discrete integer values.

2.4.3 Bluetooth Module

The HC-06 Bluetooth module properly received integer data via the UART
communication peripheral and transmitted it to the computer’s receiver. It did so at a
range exceeding its 5 ft requirement, but it did not always sustain the connection [10].
Approximately every fifteen free throw attempts, the module would become
disconnected from the computer. It was still paired and would connect again with little
effort, but it would be a nuisance if an individual was alone in the gym. It is something
we would like to diagnose and correct if given more time.

2.4.4 Computer

The computer is responsible for performing all of the high-level functionality associated
with generating user feedback. This software, in addition to the microcontroller
programming, will be addressed in a later section.

The saved integer values are from the sensor on the user’s lower thigh corresponding to
the bend of his/her leg and one on the top of the wrist corresponding to the forward
bend of that joint. A Windows application called PuTTy was necessary for displaying the
data from the Bluetooth module in a terminal window. Enabling session logging and
specifying an output text file in the aforementioned application creates a permanent

10

storage location with program-readable data. The machine learning algorithm that
provides user feedback operates on said data and is explained later.

2.5 Sensing Module

2.5.1 ADXL335 Functionality

We originally stated we would verify the functionality of the accelerometers through a
continuous bit stream. We figured a better way to prove functionality was not to look at
the analog-to-digital converted values, but to look at voltage of the accelerometers. We
placed voltage probes on the traces connected to the accelerometers and witnessed an
increase in voltage while moving the accelerometer around [5]. When we moved the
sensors faster, we noticed a larger increase in voltage.

2.5.2 Calibrate ADXL335

In our original design, we stated we would take the bit stream of accelerometer values
and average them on each axis against gravity. The problem with this method is each
time the accelerometers were turned on and off, they would start at much different base
values. Therefore, we needed to implement a better a calibration technique. We quickly
discovered that Arduino's IDE provides a sketch which calibrates our sensor for us.
Hence, we used a sketch in Arduino IDE where we only had to tilt each axis against
gravity.

2.6 Software

2.6.1 Arduino MCU Programming

The complete code that was uploaded onto our microcontroller is available in Appendix
A. The overall intention of the code is to pass integer values to the Bluetooth module.
Based on which switch is flipped, several different things can be transmitted. When the
make or miss switch is flipped, a 1 or 0 will be transmitted related to whether the shot
was made or missed, respectively. A delay is placed specifically here both to debounce
the switches and to not rush the user in flipping the switch back and forth. When the
polling switch is flipped, a five-second poll is started during which the analogRead()
function allows the code to interpret the accelerations in the x, y, and z directions of
both accelerometers as discrete, integer values. If a greater value is read for any of the
six values in successive reads, the saved maximum value is updated accordingly.

11

Regardless of which data is available, the itoa() function is utilized to convert the
integer(s) to a character array which is readable in PuTTy’s terminal and logs. A custom
serial communication monitor must be created by including the SoftwareSerial library. In
doing so and writing to this custom monitor, data is specifically passed to the data pins
of the Bluetooth module much like it displayed in the Arduino’s serial monitor. The
Bluetooth module can then pass on the character arrays masquerading as integer
values as intended.

12

Figure 2.6.1.1: Arduino microcontroller code flowchart

2.6.2 Python Machine Learning Feedback

The complete code that acts in real-time upon the PuTTy log file to generate visual and
command-line user feedback is available in Appendix B. The script is designed to run
continuously while a user is taking free throws, and the PuTTy logging text file is being
populated. If at any point there is a discrepancy between the number of data points and
the number of labels, the script will cease to run. The script reads said file every five
seconds checking for updates. When data from a poll is available, the entire log file is
read, and wrist data, leg data, and labels are separated and loaded into respective
arrays. At this point, a check is performed to determine if the most recent label has been
inputted. If not, the script prints a message to the command line for a user to do so.

When the corresponding label is in place, the support vector machine is created as our
machine learning clustering model of choice [11]. Points are plotted with their
corresponding labels, and the background is shaded in like colors to the plotted points
according to classification region. A green star and yellow star are plotted representing
the most recent shot and a theoretical best possible shot, respectively. A white line is
drawn between them evidencing how a user’s most recent shot strayed from the optimal
one in terms of wrist and leg acceleration. These values are also printed to the
command line. Finally, the classification accuracy is printed, and the script returns
awaiting the next polling data.

13

Figure 2.6.2.1: Final support vector machine graphical output

2.7 Printed Circuit Board

2.7.1 Switches

In our original proposal and design, we intended to use buttons in our wearable device
to track made shots, missed shots, and initiate our polling cycle. While building our
prototype, we realized buttons would not work in our design. We attached buttons to the
pcb, but our PCB was not working correctly. We were getting raw acceleration values
from both sensors, but they were taking data at random times. We would press the
button then at random times data would come out with integer zeros and ones.
Essentially, we were not in control of the start of the polling cycle or the make and miss
buttons. In our breadboard, we would manually input a high signal (5V) and a low signal
(GND) to the microcontroller. The breadboard version of circuit worked perfectly. The
only new variable in the PCB was the buttons. Therefore, we knew the buttons were
causing problems. By using a voltmeter, we saw the voltage go up to 5V when the
button was pressed.

14

Once the button was released, the voltage wouldn’t be at GND. It was actually feeding a
floating value to the microcontroller which was incorrect. We realized we were only
giving the microcontroller a high signal without a low signal. Hence, we could not create
the correct polling cycle. We solved the problem immediately by using a three-pronged
switch. One prong was given 5V, and the other prong was connected to GND. The last
prong would be connected to whatever digital pin corresponded to a switch and needed
to be toggled. Finally, when the switch moved from low to high and back to low, we
initiated the correct polling cycle for the accelerometers to take data.

3 Cost & Schedule

3.1 Cost Analysis

3.1.1 Parts Costs

The project does not have a fixed development cost. In other words, there are no
overhead costs. This means that all the costs for this project are dependent on the
actual product and its design. Any parts that are currently owned by the members are
considered as having no cost.

Part Vendor Quantity Cost (Bulk)

Duracell MN1604
9V Alkaline Battery
With Connector

Batteryjunction.com 1 $1.30

Voltage Regulator
(LM7805)

Digikey.com 1 $1.32

ATmega328P
Microcontroller
(ATMEGA328P-AN
)

Microchip.com 4 $8.44

Switches
(611-7101-021)

Mouser.com 3 $16.41

HC-06 Bluetooth
Module

Amazon.com 1 $8.99

15

ADXL335 Analog
Accelerometer

SparkFun.com 2 $30.00

Acrylic (2’ x 2’) HomeDepot 1 $12.00

Waist Strap Amazon.com 1 $11.00

Wrist Strap Amazon.com 1 $10.00

PCB (2-layer,
50x50 mm,
shipping included)

PCBWay.com 5 $26.00

Total $125.46

3.1.2 Labor Costs

ECS reports that for the 2015-2016 academic year the average graduating salary for a
B.S. in Electrical Engineering was ​$68,392 [8]. Assuming a 40-hour work week and an
individual working about 50 weeks each year, the equation below yields an hourly salary
of $34.20.

$68,392 / 50 weeks per year / 40 hours per week = $34.20

Equation 3.1.2.1: Hourly wage calculation for EE graduate

Our three group members anticipate working on this project approximately 15 hours per
week. We will consider a conservative 12 weeks of work: every week from the approval
of the project until the end of the semester, excluding spring break.

15 hours/week * 12 weeks * $32.40/hour * 3 group members = $17,496

Equation 3.1.2.2: Total labor cost calculation

3.1.3 Grand Total

Our project cost a total of $17,621.46 including parts and labor.

16

$17,496 + ​$125.46​ = $17,621.46

Equation 3.1.2.3: Grand total project cost

4 Conclusion

4.1 Accomplishments

At the end of our project, our group was very proud of what we had accomplished this
semester. We came into the course with a clear goal in mind, and we strongly believe
that we put in a tremendous amount of effort to successfully complete our goal. As
stated in the introduction, we are all very passionate about sports, and, as a result, we
know how much work it takes to improve one’s game. We truly feel that by the end of
this course, we were able to properly implement a device that an individual can use to
significantly improve his/her game when practicing alone. Most importantly to us, we
were able to do this by keeping the cost of the total product under $100 which to us is
very important because we understand as a student it is not feasible at times to spend a
great deal of money. When testing this device out on our own game, we did see that our
form as well as the number of shots being made both improved, and we all hope that
other users will be able to have the same success with our product one day as well.

Regarding the device itself, we accomplished each stated goal. All hardware and
software functioned such that data was transmitted properly from the accelerometers to
the microcontroller to the Bluetooth module to the computer where a support vector
machine was constructed. Beyond that, the data clustered fairly well with an 82%
classification accuracy. Therefore, we would like to consider the device a success from
the standpoints of technical completion and usefulness to a user.

4.2 Uncertainties

After completing this project, there were a couple of uncertainties that remained. For
example, the largest uncertainty was the fact that the Bluetooth module would be
unresponsive with the Bluetooth connection on the computer. The reason for this is still
unknown. Originally, we believed that this was occuring because the Bluetooth device
was greater than 5 ft away from the computer which would definitely cause them to
disconnect per the datasheet [10]. However, this was debunked as the computer and
the Bluetooth module were the same distance away from one another. The Bluetooth

17

was always on the same position on the user’s waist and the computer was always on
the same position on the floor. With these two located in the exact same place, we
would sometimes be able to get well over twenty readings before the two suddenly
disconnected. Sometimes we would not even be able to get ten readings without them
disconnecting. Since we eliminated the distance factor, there could be a plethora of
things that actually caused this to occur. This could be from just a glitchy device to
problems with the computer we were using.

Another uncertainty that still remains was a code crash that occurred during our demo.
Unfortunately, this particular flaw occurred during our final demonstration. After some
investigation, it turned out to be an error in not branching back to the beginning of the
feedback() function in the Python code after asking a user to input the most recent label.
It was actually quite an easy fix.

4.3 Future Work/Alternatives

If we choose to pursue this project further in the future, we would choose to implement a
variety of new features. Such improvements include wireless accelerometers, a sturdier
and more comfortable enclosing for the MCU, expanding the device and code to expand
to shots of varying distances, and also to implement a wearable display to eliminate the
computer.

The reason why we would like to implement wireless accelerometers is for the
convenience of our users. Though we did not run into any significant problems with the
wires, eliminating the wires would also eliminate the chance of the wires getting tangled
or even worse tearing. Therefore, we believe that this would also extend the life of this
product. Another change which we would like to implement is a sturdier enclosure for
the MCU. As it appears in section 1.3, the enclosure for the MCU could be argued as
slightly bulky, especially when it is attached to the side of a user’s waist. Reducing the
size of the enclosure could make it significantly easier to use, and it would prevent the
possibility of it getting in the way of a user’s hand when he/she is shooting. The next
change we would like to implement would be to expand the device to be able to provide
feedback to shots of varying distances. This not only make our product more valuable
and marketable to consumers, but it would also allow the product to have a much more
significant and wider impact on an individual's game which was the main of this product.
Finally, the last change we would like to implement in the feature is a wearable screen,
such as a watch, that a user can wear on his arm when using the product. This
wearable device would essentially serve the same purpose as the laptop as it would

18

relay to the user what they can do in order to improve their shot. The reason for this
new feature would be to eliminate the use of a laptop when practicing. Taking a shot
and then walking over to a laptop to see the feedback is not ideal for a user, and this
would eliminate that problem.

4.4 Ethical and Safety Considerations

Safety and ethics are an issue of importance to our group, and they are something we
made sure to take into consideration for every portion of our project. As a result we
made sure that everything we did for our project aligned with the IEEE Code of Ethics.

As a group we understand the importance of safety, and that there were numerous
things that could have gone wrong that could have caused a safety hazard to a user.
These safety hazards could have either stem from human errors to things that may not
entirely be in our control. Such uncontrollable incidents could be an injury on the court
such as hurting an ankle or wrist when shooting the basketball. Human errors that could
cause safety hazards include misuse of laboratory equipment such as not turning off
soldering irons after using them. Hardware issues such as overheating of the battery
and other components could lead to safety issues for a user.

As a group, we also made it a priority to handle any safety issues that arose
professionally. This would have included pulling a fire alarm and notifying the proper
authorities if something such as a fire were to occur while we were working on our
product in the lab. Fortunately, we were never in a position where we had to.

As stated above, our group worked hard to abide by all the IEEE Code of Ethics. One
example of this includes IEEE Code of Ethics #3. This particular one states “to be
honest and realistic in stating claims or estimates based on available data” [4]. We
strongly believe that we did a good job of abiding by this as everything we presented
was actual data we gathered, and this is important as if we decided to ever
commercialize our product for consumers. Then, it would be highly unethical to present
data which could have been tainted or not accurately represent what our product is
capable of.

Using the IEEE Code of Ethics, we believe that we implemented a safe and ethical
product while taking into account numerous different design choices to try and mitigate
any issues that could have potentially arisen.

19

5 Citations

[1] Struzik, A., Pietraszewski, B. and Zawadzki, J. (2018). ​Biomechanical Analysis of the
Jump Shot in Basketball​. [online] Available at:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234772/ [Accessed 7 Feb. 2018].

[2] Wilson.com. (2018). ​Wilson LABS - Wilson X Connected Basketball​. [online]
Available at: http://www.wilson.com/en-us/explore/labs/basketball/wilson-x
[Accessed 8 Feb. 2018].

[3] Volleyball, P. (2018). ​Noah Basketball​. [online] Available at:
http://www.noahbasketball.com/ [Accessed 20 Feb. 2018].

[4] Ieee.org, "IEEE IEEE Code of Ethics", 2016. [Online]. Available:
http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 6- Feb- 2018].

[5] SparkFun.com (2018). ​ADXL335 Data Sheet​. [online] Available at:
https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf [Accessed 13
Feb. 2018].

[6] Duracell.com. (2018).​ 2032 Lithium Coin Battery​ [online] Available at:
https://www.duracell.com/en-us/product/2032-lithium-coin-button-battery/
[Accessed 20 Feb. 2018].

[7] Mouser.com (2018). ​Compact 20mm Battery Holder​ [online] Available at:
https://www.mouser.com/ds/2/215/066-745915.pdf [Accessed 20 Feb. 2018].

[8] Engineering Career Services (2018). ​Salary Information 2015-2016​ [online] Available
at: https://engineering.illinois.edu/documents/Salary.Info.Sheet.pdf [Accessed 22 Feb.
2018].

[9] Microchip.com. (2018). ​ATmega328P - 8-bit AVR Microcontrollers​. [online] Available
at: http://www.microchip.com/wwwproducts/en/ATmega328p [Accessed 23 Feb. 2018].

[10] Olimex.com. (2018). ​HC-06 - Olimex​ [online] Available at:
https://www.olimex.com/Products/Components/RF/BLUETOOTH...HC-06/.../hc06.pdf
[Accessed 23 Feb. 2018].

20

[11] Scikit-learn.org. (2018). ​1.4. Support Vector Machines — scikit-learn 0.19.1
documentation​. [online] Available at: http://scikit-learn.org/stable/modules/svm.html
[Accessed 12 April 2018].

[12] Sparkfun.com. (2018). [online] Available at:
https://www.sparkfun.com/datasheets/Components/LM7805.pdf [Accessed 3 May
2018].

21

Appendices

Appendix A: Requirements and Verification Tables

Power Module

Requirement Verification

Capable of powering microcontroller and
two accelerometers and bluetooth module

After testing whether the Duracell
batteries can successfully power the
microcontroller, we will connect each
accelerometer one at a time to verify the
power module’s capability to successfully
handle all the other modules of the
project. Same procedure will be done for
the bluetooth module.

Successful voltage step down from ~3 V
to 1.8 V

To make sure that the voltage steps down
from ~3 V to 1.8 ​±​ 2%, we will use a
digital multimeter to test the voltage at the
output.

Successful current increase from 0.165
mA to 0.2 mA

To make sure that the current is 0.2 mA
at the output, we will use a digital
multimeter to test

Table A.1: Requirements and verification for power module

Microcontroller

Requirement Verification

Capable of receiving 1,500 voltage values
from ADC via I2C in 1 s

Send known stream of sensor data from
ADC to MCU via I2C. Read transmitted
data on Arduino Uno using its interface
provided timer to check latency and verify
correctness.

Capable of transmitting data via UART in
1 s

Connect the Bluetooth module via UART
to the Arduino Uno, and send discrete,
floating-point values that must be read

22

correctly by the computer after being
wirelessly transmitted. Do so with Uno’s
timer and the computer’s timer to verify
latency on both ends.

Store 24 KB of data in flash memory 32 KB of flash memory is sufficient.
Equation 2.4.1.1 below describes the
derivation of the 24 KB necessity. Using
the Arduino Uno, we will read the values
to ensure correctness of the 1,500 values
in flash memory.

Table A.2: Requirements and verification for microcontroller in control unit

Analog-to-Digital Converter

Requirement Verification

Analog sensor data stream must be
sampled into discrete values in 1 s total

Use the Arduino Uno’s interface and
timer to determine if 1,500 discrete
voltage values have been passed to the
MCU’s flash memory from the ADC
without errors and under the 1 s latency
threshold.

Table A.3: Requirements and verification for analog-to-digital converter in control unit

Sensing Module

Requirement Verification

Check ADXL335 functionality Connect to Arduino Uno and ensure
continuous voltage output through bit
stream. Prove 1g is around .55 V

Calibrate ADXL335 for accurate
measurements

Connect to Arduino Uno and adjust
sensor for each axis against gravity. With
a 1g voltage reading from a voltmeter, we
can see how close the sensor records
gravity. We can do this many times and
take an average. Hence, we can verify
our sensitivity by moving our sensor to

23

get a reading close to .003 g and
subtracting the offset in voltage we got
from our gravity calculation.

Operate at 50 Hz Measure the frequency of axis output with
an oscilloscope.

Table A.4: Requirements and verification for sensing module

Computer and Bluetooth

Requirement Verification

Bluetooth 2.0 compatibility Ensure pairing and established connection
with HC-06 Bluetooth module.

Must receive and store floating-point
values HC-06 Bluetooth module

Send known value from MCU through
Bluetooth module to computer’s Bluetooth
receiver. Verify correct value, and save in
script.

Ability to construct support vector
machine with training data

Obtain contrived data set with known SVM,
and ensure SVM from script is comparable.

Entire process from receiving data points
from Bluetooth module to outputting
feedback to user must take under 2 s

Use script timer for entire Python script,
and ensure it reads ≤ 2 s regardless of
training/testing phase or number of saved
data points.

24

Capable of receiving data via UART and
transmitting it to a Bluetooth receiver in 1
s combined

Connect module to Arduino Uno’s UART
bus, and send known, discrete,
floating-point values from the MCU that
must be read correctly by this module after
being wirelessly transmitted to a computer.
Use the timer of the Uno and computer to
verify latency on both ends.

Must maintain Bluetooth connection
distance of about 5 ft between user’s hip
and computer

Must maintain Bluetooth connection
distance of about 5 ft between user’s hip
and computer

Table A.5: Requirements and verification for Computer and Bluetooth module

25

Appendix B: PCB Layout

Figure B.1: Printed circuit board for entire device

26

Appendix C: Circuit Schematic

Figure C.1: Circuit schematic for entire device

27

Appendix D: Arduino Code

28

Figure D.1: Arduino IDE code uploaded to ATmega328P-PU

29

Appendix E: Python Code

Figure E.1: Python script providing user feedback

30

