

Dynamic Keyboard

By

Jeevitesh Juneja

Nigel Haran

Final Report for ECE 445, Senior Design, Spring 2018

TA: Xinrui Zhu

2 May 2018

Project No. 20

Abstract

Our design is creating a keyboard add on that allows any keyboard to act as a dynamic
keyboard storing up to ten macros that are programmed through the hardware itself. Our design
was initially through two microcontrollers acting as a master and slave microcontroller. After
discovering its inability to act as a host we updated our design to contain three different parts,
the leonardo arduino clone, USB host shield, and LCD. Our resulting design ended with a
keyboard that can store up to ten macros. Each of these macros can store a combination of
three keys while providing feedback through the LCD.

1

Contents

1 Introduction………………………………………………………………………………………….. 3
 1.1 Objective………………………………………………………………………………………… 3
 1.2 High Level Requirements……………………………………………………………………… 3
2 Design………………………………………………………………………………………………... 3
 2.1 Block Diagram………………………………………………………………………………….. 3
 2.2 Hardware Design………………………………………………………………………………. 4
 2.2.1 Power System…………………………………………………………………………… 4
 2.2.1.1 Voltage Regulator……………………………………………………………… 4
 2.2.1.2 Voltage Divider…………………………………………………………………. 5
 2.2.1.3 Zener Diode…………………………………………………………………….. 5
 2.3 Software Design………………………………………………………………………………... 6
3 Design Verification………………………………………………………………………………….. 8
 3.1 Power System.………………………………………………………………………………….. 8
 3.1.1 Output Voltage of Voltage Regulator.…………………………………………………. 8
 3.1.2 Output Voltage of Voltage Divider……………………………………………………... 9
 3.1.3 Output Voltage of Zener Diode ………………………………………………………... 9
 3.2 LCD Display …………………………………………………………………………………….. 10
 3.2.1 Display Different Interactions…………………………………………………………… 10
 3.3 USB Communication…………………………………………………………………………… 11
 3.3.1 USB Host Shield…………………………………………………………………………. 12
 3.3.2 USB HID Device…………………………………………………………………………. 12
 3.3.3 EEPROM…………………………………………………………………………………. 12
 4 Costs ………………………………………………………………………………………………. 13
 4.1 Parts …………………………………………………………………………………………… 13
 4.2 Labor …………………………………………………………………………………………... 13
 4.3 Grand Total ………………………………………………………………………………….... 13
5 Conclusion …………………………………………………………………………………………. 14
 5.1 Accomplishments …………………………………………………………………………….. 14
 5.2 Uncertainties ………………………………………………………………………………….. 14
 5.3 Ethical Considerations ………………………………………………………………………. 14
 5.4 Future Work…………………………………………………………………………………… 14
References ………………………………………………………………………………………….. 14
Appendix A Requirements and Verifications ……………………………………………………. 16
Appendix B Schematics and Product ……………………………………………………………. 20

2

1 Introduction

1.1 Objective

What we are trying to address with our design is an innovation on a concept that has not had
much innovation in the past few years. There are designs of dynamic keyboards like the
Logitech G810 [1] and LogicKeyboard Astra [2] that have only made innovations in the design
layout and cosmetics of the keyboard itself. Our design is innovative because it will be able to
turn any keyboard into a dynamic keyboard while functioning on any computer. Our goal of this
design, is to create an add on device that is capable of making any keyboard programmable
with any computer. The product itself will be inexpensive allowing any person to be able to
purchase and use this product. Our hope for the future is to have a device that can allow either
macros of massive size or enough macros to reconstruct the layout of an entire keyboard.

1.2 High Level Requirements

● Provide user interface feedback of the keys being pressed through an LCD display
● Write and rewrite programmable keys.
● Perform on any keyboard and computer while keeping the programmed macros saved

for use between different keyboards and computers

2 Design

2.1 Block Diagram

Figure 1: High Level Block Diagram

3

Power System: The computer itself will be used to power the circuit. The voltage is regulated
by a voltage regulator to 3.3 V and is fed into the USB host shield. The voltage is also regulated
by a zener diode to 4.2V and is fed into the keyboard driver. The remaining components of the
circuit are able to run on the 5V that the USB power provides.

Control System: The Arduino Leonardo Clone is responsible for feeding the scan codes
obtained from the keyboard to the computer and LCD screen. It also feeds the programmable
macros back to the keyboard through the USB Host Shield. The USB Host Shield serves to
assist the Arduino to act as a USB host and assists in the transfer of information to and from the
keyboard device.

User Interface: The LCD display is presented by a 16x1 bit screen that provides 16 characters.
The purpose behind the LCD is to provide real time feedback to the user to help organize
macros and know when to execute the actions to program a macro. The set macro button will
be used in order to execute the programming of the macro, the button will be pressed once to
set the macro to a key or pressed twice to reset all macros.

Keyboard: The keyboard will provide the scan codes and receive the macros that we program
to it.

Computer: This will interface with the keyboard and our add on in order to execute the keys
and macros that are pressed. It will also serve to provide the 5V power needed for our add on to
function.

2.2 Hardware Design

2.2.1 Power System

2.2.1.1 Voltage Regulator
Input: 5V from the USB 2.0

Output: 3.3 +/- 5% power for the USB host shield

The circuit for the USB host shield contains a LM317T adjustable voltage regulator that is meant
to reduce the input voltage and produce stable outputs for other parts of the circuit. We use two
resistors (R1,R2) in order to adjust the output voltage. We also have a decoupling capacitor C1
in order to filter out unwanted AC noise and C2 to improve ripple removal.

The output voltage of LM317T is expressed as

 eq.1out V ref (1) adj 2V = + R1

R2 + I * R

4

In this case Vref is the voltage between the output and adjustment terminals which has a fixed
value of 1.25V. The Iadj is meant to minimize and maintain constant values with changes to the
load. However, because the current is small the value Iadj can be ignored. The datasheet for the
LM317T suggests that the resistor for R1 should be 240 and we adjust the value of R2 inΩ
order to control what the output voltage should be using the equation provided.

 eq.2out 1.25(1)V = + R2

240

We can rearrange the equation to find the value of R2 when we know we want 3.3V

 eq.32 240() 93.6R = 3.3
1.25 − 1 = 3

From this we can see that we need a resistor of roughly 393.6 , which we were able toΩ
successfully execute with a 390Ω resistor. [3]

2.2.1.2 Voltage Divider
We need the voltage divider in order to provide a reference voltage for the LCD. This is so the
display can show the characters on the screen appropriately. The voltage divider involves two
resistors in series where the value between the two resistors is the voltage applied to the
reference point of the LCD.

The ratio of the voltages are meant to satisfy the voltage division law

 eq.4V in
V out = Rdown

Rup+Rdown

We can adjust this relationship so that we can establish a ratio between the resistors and the
voltage we have.

 eq.5
Rup
Rdown = V out

V in − V out

The input voltage in this case is the 5V provided from the USB 2.0, while the output that we
want is 0.8V to act as the reference for the LCD. The datasheet for the LCD says that we want
the reference voltage to be around 0.5V, however when applying the voltage the best results
was when we had 0.8V as the reference voltage. We apply these values to the relationship
established above to obtain the resistance ratio we want.

 eq.6.25Rup
Rdown = 0.8

5−0.8 = 5

From this ratio we originally planned for the Rup to be 9.1kΩ where the ratio relationship would
have Rdown be 1.73kΩ. [4]

5

2.2.1.3 Zener Diode
We need the zener diode in order to reduce the input voltage of 5V to 4.2V for the keyboard.
This is due to the keyboard having a failsafe that shuts the keyboard down if the input voltage
exceeds 5V. The design behind the zener diode involves the diode to have a resistor in series
and in parallel. This reduces the output voltage from the input voltage.

The first thing we have to establish is the resistance that we would have running in series with
the zener diode. This is determined by the equation

 eq.7s ΩR = Iz
V s−V z = 0.1

5−4.2 = 8

In this case Vs is the input voltage of 5V, Vz is the desired voltage of 4.2V and Iz is the desired
output current of 100mA. We then proceeded to obtain the resistor we would want in parallel
with our zener diode which is determined by the equation

 eq.8l 2ΩR = Il
V z = 0.1

4.2 = 4

In this case Vz is the desired voltage output and IL is the current in parallel with the zener diode.
From these equations we determined that we needed to use a 4.2 Zener Diode with an 8Ω
resistor in series with the diode and 42Ω resistor in parallel so that can have a stable 4.2V
power supply for the keyboard. [5]

2.3 Software Design

The software portion of the device implements the the control logic utilized by the
microprocessors to provide the intended functionality of our project. The flow charts below
illustrate how the user would interact with the device to set new macros and clear existing ones.

Figure 2: User Interaction Flowchart

All of this functionality is implemented by the code stored by the Leonardo microprocessor and
is responsible for receiving the keyboard data from the USB Host Shield, outputting to the
Computer via USB HID protocol, controlling the LCD display, storing data to EEPROM and
implementing the control logic to create an output based on the defined macros. The figure
below illustrates the startup protocols as well as the main control loop the code implements.

6

Figure 3: Control Logic of Microprocessor

The figure above abstracts the logic employed to “Handle USB Events”. There are three
keyboard HID events that our device can handle: Key Up, Key Down, and Modifier Change. The
control logic of the USB event handlers detailed in the figure below is responsible for both
outputting the computer’s keystrokes and macros pressed by the user while updating the
MacroArray structure. This is responsible for storing the user defined macros. These events
need to be handled differently based on whether the device is in standard operation or the user
is setting the macro. This is accomplished through the the flags ProgramMacro and TypeMacro
that are set in the Main Loop above.

7

Figure 4: Control Logic of Key Down, Key Up, and Modifier Change keyboard events

3 Design Verification

3.1 Power System

3.1.1 Output voltage of the 3.3V regulator

To verify the voltage regulator output, we connected the input to a DC voltage generator and the
output of the regulator to a multimeter. We then made the range of the input voltage between 0

8

and 7V and read how it affected the output of the 3.3V regulator. The result is show in the chart
below.

Figure 5: The measured output voltage for the 3.3V regulator

From this figure, we can see that the voltage regulator consistently produces around 3.3V when
the input voltage is greater than 5V. The specific measured voltage was 3.23V. We can
measure the error through the equation [3]

 eq.9.0212 00 .12%V theoretical
V theoretical−V measured = 3.3

3.3−3.23 = 0 * 1 = 2

3.1.2 Output Voltage of Voltage Divider

To verify the voltage divider output, we connected the input to the 5V USB source and the
output of the divider to a multimeter. We then proceeded to measure the output voltage of the
divider and noticed that the divider had an output of 0.803V. We can measure the error through
the equation [4]

 eq.10.00375 00 .375%V theoretical
V theoretical−V measured = 0.8

0.8−0.803 = 0 * 1 = 0

3.1.3 Output Voltage of Zener Diode

To verify the Zener diode output, we connected the input to the 5V USB source and the output
of the diode to a multimeter. We then proceeded to measure the output voltage of the diode and
noticed that the diode had an output of 4.05V. We can measure the error through the equation
[5]

 eq.11.0357 00 .57%V theoretical
V theoretical−V measured = 4.2

4.2−4.05 = 0 * 1 = 3

9

3.2 LCD Display

3.2.1 Display Different Interactions

Figure 6: LCD display showing execution of key releases and macros releases

We tested the LCD when our entire product was set up and functioning. The way we would test
the basic display of our LCD was by having a macro set to one of the keys. We proceeded to
type on the keyboard and check to see if the LCD was displaying the keyboard keys that were
released and the macros that were released. We can see from the images above that the LCD
display was showing what we wanted. [6]

Figure 7: Instruction set of programming a macro

We then proceeded to investigate whether or not the LCD display would display the instructions
to set a macro. We would go through the process of pressing the button to set a macro in which
it would display “type macro,” where you would press a key on the keyboard and then press the
combination of keys. We would then press the macro button again and it should display “macro

10

set.” The images above verify that the LCD display is capable of displaying the instructions to
set the macro. [6]

Figure 8: Display of macro reset

We then proceeded to investigate if the LCD display could display that the macros had been
reset. We would proceed to do this by pressing the set macro button twice in order to initiate the
reset macro protocol. We can confirm that our display was fully working if it displayed “macros
reset,” in which it did. This is shown through the image above and further verifies the
functionality of our LCD display. [6]

3.3 USB Communication

Figure 9: Serial Port output of USB communication test

11

3.3.1 USB Host Shield
We were able to test host shield communication by displaying the scan codes received from the
Keyboard through the serial port. This is shown in the figure above when the input “test 1” was
typed on the keyboard plugged into the device. Our test code then printed the scan codes to the
serial port as well as whether it was a key down, key up, or modifier change. The Ascii value, if
available, of the scan code during key down events are also displayed for ease of testing
purposes. We tested each of the 104 keys on our keyboard and confirmed that the correct scan
codes were displayed. This ensured that our device correctly functioned as a USB host and
read inputs from our keyboard. [7]

3.3.2 USB HID Device
We were also able to use the above test code to verify that our device functioned as a USB
device and outputted correctly to our device. As shown in the figure above, when the input “test
1” was typed on the keyboard that was plugged into our device, the text was also typed into the
empty text box of the Serial Port window. We further tested this by opening a word file and
typing various letters, holding down keys, and inputting complex combinations of keystrokes
such as Ctrl+Alt+Delete through the keyboard plugged into our device. We then checked to see
if the expected result was outputted to the computer. Lastly, we tested whether the Caps Lock,
Num Lock and Scroll Lock LEDs functioned correctly when the keyboard was plugged into our
device as these LEDs are controlled by the computer in USB keyboards. All of this confirmed
that device also functioned correctly as a USB HID device. [8]

3.4 EEPROM
We tested the proper storage and retrieval of macros to non-volatile memory by creating macros
on our device using our fully implemented code. We then unplugged our device from the
computer and waited several minutes. Due to the device is completely powered by the 5V Vcc
output from the computer’s USB port, all data stored in volatile memory would be erased. We
then plugged our device into a seperate computer and tested whether the macros we had
previously created still functioned. Finally, we initiated macro reset by pressing the Set Macro
Button twice and checked whether the macros were properly erased. This test confirmed that
we correctly stored and loaded data to and from the EEPROM. [8]

3.5 Control Logic
Finally, we validated the functionality of the control logic by running the completed code on the
integrated device. We confirmed that we were able to store and output ten macros, each a
maximum of three keystrokes in length. We used two different USB Keyboards and three
different computers, of which two ran on Windows OS and one ran on Mac OS. We also ran a
Linux virtual machine on one of Windows computers and tested that the device with Linux OS
as well. This not only verified the correct implementation of our control logic but also integration
of each of the components listed previously.

12

4 Costs
4.1 Parts

Table 1: Component Costs

Part Name Part Number Unit Cost Quantity Total

Leonardo AtMega34u4 $6.95 1 $6.95

USB Host Shield MAX3421e $10.25 1 $10.25

Voltage
Regulator

LM317T $1.59 1 $1.59

Zener Diode $0.19 1 $0.19

Keyboard k120 $14.66 1 $14.66

PCB $26 4 $104

LCD NHD-0116-DZ-F
L-YBW

$13.90 1 $13.90

Op Amp $0.62 6 $3.72

Total $155.26

4.2 Labor

 Table 2: Labor Costs

Name Hours Invested Hourly Rate [9] Total Cost =
Rate*Hours*2.5

Nigel Haran 170 $33 $14,025

Jeevitesh Juneja 170 $33 $14,025

Total 340 $28,050

4.3 Grand Total

Table 3: Total Costs (Components Cost + Labor Cost)

Parts Labor Grand Total

155.26 28,050 $28,205.26

13

5. Conclusion

5.1 Accomplishment

Our team was able to successfully develop a hardware implemented dynamic keyboard. The
LCD screen was able to successfully display the keys that were being pressed and which
macros are being pressed. The LCD was also able to display the instructions when setting a
macro and when the macros were being reset. The USB host shield and Leonardo clone were
able to successful communicate with each other. Due to these working we were able to
successfully create an add on that allows us to have a key on the keyboard represent a
combination of keys. We were able to have up to 10 programmable macros that can be
rewritten and reset. Thus, we were able to execute all the requirements we had for our design.

5.2 Uncertainties

The major issue we had faced was in our initial design where we had two pic microcontrollers.
However, they would not be able to act as USB hosts which caused us to scrap our entire
design. We resolved this with our USB host shield and Leonardo clone. The issue that remained
was our voltage divider that was used as a reference for the LCD. The voltage divider would
typically have trouble staying stabled and caused some parts of the LCD screen to burn out.
The LCD was also using soldered wires that had some issue coming undone or breaking off,
which we would hope to resolve by having a firmer connection between the data pins of the
Leonardo clone and the LCD pins.

5.3 Ethical Considerations

Throughout our design and research, we made sure to respect the codes of ethics established
by the IEEE. We made sure to maintain honesty when collecting data during the verification
tests and guaranteeing that successful tests were not a case of an accident. We made sure to
respect any criticism that was brought to our attention and put effort into using these criticisms
to improve our design. This criticism would come from our TAs, instructors, and fellow students.
They assisted us by making our design achievable and making sure that we could make a
product that could be functioning by the time we had to demo. We also made sure to give credit
to any outside sources we used to create our product. [14] [15]

5.4 Future Work

When we made a change in our microcontrollers we noticed that there was now extra memory
that could be used. Due to this extra memory, we could create enough macros to fill the entire
keyboard with a combination of three keys or have limited macros that can store a combination
of more than 26 keys. We could also work on having our entire design on one single PCB so

14

that it could be placed in one casing. This would make our product have the potential of being
sold. We would also like to use an LCD that could be better soldered to our leonardo clone to
guarantee secure connections. Overall, our design is fairly finished with some minor touch ups
that would make it a successful product.

References

[1]logitechg.com, “G810 Orion Spectrum,” [Online] Available:
https://www.logitechg.com/en-us/product/g810-orion-spectrum-rgb-gaming-keyboard . Accessed
10 Feb 2018.
[2]logickeyboard.com, “Avid Media Composer PC Backlit Astra Keyboard,” [Online] Available:
http://logickeyboard.com/shop/avid-media-composer-astra-backlit-pc-keyboard-3417p.html .
Accessed: 10 Feb 2018.
[3]ti.com, “LM317 - 3 Terminal Adjustable Regulator,” [Online] Available:
http://www.ti.com/lit/ds/symlink/lm317.pdf . Accessed: 13 Feb 2018.
[4]allaboutcircuits.com, “Voltage Divider Calculator,” [Online] Available:
https://www.allaboutcircuits.com/tools/voltage-divider-calculator/ . Accessed: 10 Mar 2018.
[5]electronics-tutorials.ws, “The Zener Diode,” [Online] Available:
https://www.electronics-tutorials.ws/diode/diode_7.html . Accessed: 11 Mar 2018.
[6]mouser.com, “NHD-0116DZ-FL-YBW,” [Online] Available:
https://www.mouser.com/ds/2/291/NHD-0116DZ-FL-YBW-34847.pdf . Accessed: 18 Feb 2018
[7]MAXIM, “USB Peripheral/Host Controller with SPI Interface, MAX3421E,” [Online] Available:
https://www.sparkfun.com/datasheets/DevTools/Arduino/MAX3421E.pdf . Accessed: 29 Mar
2018.
[8] Atmel, “8 bit AVR Microcontrollers, ATmega32u4,” [Online] Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-AT
mega328-328P_Summary.pdf . Accessed: 29 Mar 2018.
[9] ece.illinois.edu, “Salary Averages,” [Online], Available:
https://ece.illinois.edu/admissions/why-ece/salary-averages.asp . Accessed: 23 Feb 2018
[10] arduinolibraries.info, “USB Host Shield Library 2.0” [Online], Available:
https://www.arduinolibraries.info/libraries/usb-host-shield-library-2-0 . Accessed: 04 April 2018
[11] arduino.cc, “USB Keyboard Reference”, [Online], Available:
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/ . Accessed: 04 April
2018
[12] www.arduino.cc, “EEPROM Library”, [Online], Available:
https://www.arduino.cc/en/Reference/EEPROM . Accessed: 13 April 2018
[13] www.arduino.cc, “LiquidCrystal Library”, [Online], Available:
https://www.arduino.cc/en/Reference/LiquidCrystal . Accessed: 14 April 2018
[14]Ieee.org, "IEEE IEEE Code of Ethics", 2018. [Online] Available:
http://www.ieee.org/about/corporate/governance/p7-8.html. Accessed: 6 Feb 2018.

15

https://www.logitechg.com/en-us/product/g810-orion-spectrum-rgb-gaming-keyboard
http://logickeyboard.com/shop/avid-media-composer-astra-backlit-pc-keyboard-3417p.html
http://www.ti.com/lit/ds/symlink/lm317.pdf
https://www.allaboutcircuits.com/tools/voltage-divider-calculator/
https://www.electronics-tutorials.ws/diode/diode_7.html
https://www.mouser.com/ds/2/291/NHD-0116DZ-FL-YBW-34847.pdf
https://www.sparkfun.com/datasheets/DevTools/Arduino/MAX3421E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Summary.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Summary.pdf
https://ece.illinois.edu/admissions/why-ece/salary-averages.asp
https://www.arduinolibraries.info/libraries/usb-host-shield-library-2-0
https://www.arduino.cc/reference/en/language/functions/usb/keyboard/
https://www.arduino.cc/en/Reference/EEPROM
https://www.arduino.cc/en/Reference/LiquidCrystal
http://www.ieee.org/about/corporate/governance/p7-8.html

[15]acm.org, “ACM Code of Ethics and Professional Conduct,” 2018. Available:
https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct#sect2.
Accessed 6 Feb 2018

Appendix A Requirement and Verification

Table 4: The requirement and verification table of the power system

Requirement Verification Verification Status

Power Supply

The voltage across the
output and ground for the
LM317-T must be 3.3V with
a max error of +/- 5%

1a. Connect USB 2.0 to the
input of the regulator to
provide a voltage of 5V.
1b. Connect a Digit
Multimeter to the output of
the circuit and the ground to
measure the voltage.
1c. Verify that the output is
within +/- 5% error.

Yes

The voltage must remain
stable during the power
supply from the USB 2.0.

2a. Have the power supply
connected to provide power.
2b. Use Digit Multimeter to
measure the output as the
power supply is altered
above 5V.
2c. Verify that the output is
within +/- 5% error.

Yes

The voltage provided to pin
15, LCD+ must read 5V
while pin 16, LCD- reads 0V
providing the correct power
and ground for the LCD
display with max error of
5%.

3a. Connect the input to pin
15 and ground to pin 16 of
the LCD to a Digit
Multimeter and measure the
voltage.
3b. Verify that the output is
within +/- 5% error.

Yes

16

https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct#sect2

The voltage divider
connected to pin 3 of the
LCD reads 0.8V as a
reference voltage with a
max error of 10%.

4a. Connect the input to pin
3 and ground to a Digit
Multimeter and measure the
voltage.
4b. Verify that the output is
within +/- 5% error.

Yes

The voltage across the
output of the Zener Diode
must read 4.2V with a max
error of +/- 5%.

5a. Connect the output of
the Zener Diode power
supply to a Digit Multimeter
and measure the voltage.
5b. Verify that the output is
within +/- 5% error.

Yes

Table 5: The requirement and verification table of the LCD

Requirement Verification Verification Status

LCD Display

Displays a coded string of
characters correctly.

1a. Utilize the keyboard to
send a bit string to the LCD
through the Leonardo clone.
1b. The LCD has the correct
string of characters on the
display board.
1c. Verify that all bits of the
string are able to produce a
character.

Yes

Table 6: The requirement and verification table of the microcontrollers

Requirement Verification Verification Status

Leonardo Clone and Host
Shield

17

Leonardo clone stores up to
10 macros and is able to
overwrite previous macros
with new ones.

 1a. Run up to 10 macros
for the keyboard.
1b. Confirm that all 10 of the
macros are being correctly
displayed on the computer.
1c. Create an 11th macros
and confirm that it
overwrites the first macros.

Yes

Keyboard correctly running
scan codes through USB
host shield and Leonardo to
the computer.

2a. Have the host shield
connected to the keyboard.
2b. Connect the Leonardo
to the host shield.
2c. Press keys of the
keyboard and verify that
those keys are being
displayed on a word
document.
2d. Press the keys that have
macros set to them and
verify that they are being
displayed on the word
document.

Yes

Correctly implemented
communication between the
Leonardo clone and USB
host shield.

3a. Run test code through
the Leonardo.
3b. Confirm that the
keyboard connected to the
USB host shield validly
outputs to the serial monitor.

Yes

Have the Leonardo correctly
store the EEPROM from the
scan codes for the macro
key.

4a. Connect the USB host
shield to the keyboard.
4b. Connect the Leonardo
to the computer and run a
test code that outputs the
data stored in the memory
of the chips.

Yes

18

Output scan codes through
the serial port.

5a. Connect USB Host
shield to keyboard.
5b. Connect Leonardo to
computer.
5c. Have stored scan codes
output to the serial port.

Yes

Table 7: The requirement and verification table of the macro button

Requirement Verification Verification Status

Set Macro Button

Have the set macro button
correctly register button
presses, with less than 2%
false positives or unwanted
double click being
registered.

1a. Connect button output to
multimeter to see if the
presses are registered
correctly.
1b. Collect the frequency
data on the false positives
to ensure that there are less
than 2%.

Yes

19

Appendix B

Figure 10: Schematic for 3.3V regulator

Figure 11: Schematic for Zener Diode

20

Figure 12: Schematic of USB Host Shield Clone

Figure 13: Schematic of Leonardo Clone

21

Figure 14: Complete implementation of the Design

22

