

AUTOMATIC TEA BREWING THERMOS

By

Joseph Niemerg

Vincent Murphy

Danny Yi

Final Report for ECE 445, Senior Design, Spring 2018

TA: Nicholas Ratajczyk

2 May 2018

Project No. 60

ii

Abstract

For our final project we decided on an automatic tea brewing thermos. This thermos will be able to take

boiling water and regulate the time of steeping and temperatures for both steeping and drinking. In this

document we will be discussing the design process, verification, and conclusions we can draw.

iii

Contents

1. Introduction .. 1

1.1 Team Project Overview ... 1

1.2 High Level Requirements .. 1

2 Design .. 1

2.1 Circuit Schematic... 2

2.1 PCB .. 4

2.2 User Interface ... 4

2.2.1 Design Considerations of LCD Screen and Buttons .. 4

2.2.2 Design Considerations for Phone Application ... 6

2.3 Design Considerations for Control Software .. 7

2.4 Design Considerations for Power .. 8

2.5 Physical Design .. 8

3. Design Verification .. 9

3.1 LCD and Buttons Verification .. 10

3.2 Phone Application Verification ... 12

Figure 13. Phone App Interface .. 12

3.3 5 V Voltage Regulator ... 12

3.4 3.3 V Voltage Regulator .. 13

3.5 Control Software & Control Components Verification ... 13

3.6 Nichrome Wire .. 13

Figure 15. Temp Results .. 14

4. Costs .. 14

4.1 Parts .. 14

4.2 Labor ... 14

5. Conclusion ... 15

5.1 Accomplishments .. 15

5.2 Uncertainties ... 15

5.3 Ethical considerations ... 15

5.4 Future work ... 16

iv

References .. 17

Appendix A Requirement and Verification Table ... 18

Appendix B Block Diagram ... 22

Appendix C State Diagram .. 23

Appendix D Software Code for Phone Application ... 24

Appendix E Phone App Process .. 25

Appendix F Software Code for Microcontroller ... 26

1

1. Introduction
In modern day America there is a sever lack of tea drinking. Linked to many health benefits it is

a shame that so many go without it. This project is the solution to this problem by taking out all the

hassles of drinking tea. Such as forgetting to remove the tea bag and over steeping it making the drink

bitter and unbearable. In addition, not drinking the tea quick enough and having it go cold and be

unsatisfying. Our device however will counteract these issues by brewing the tea automatically

removing the tea bag from the water after a set amount of time. Additionally, our device will maintain a

user set drinking temperature to keep the tea at a satisfying temperature. In the upcoming sections the

objectives of our device will be further explored. Followed by the physical design work done than the

verification of our design. Lastly the cost of the product will be analyzed followed by a conclusion. A

conclusion which will lay out our accomplishments, uncertainties, and the ethical considerations we

considered for the cup.

1.1 Team Project Overview
The Automatic Tea Brewing Thermos is an easy to use, mobile, and automated tea steeping

thermos. It requires the user to input hot-boiling water, his/her favorite teabag, along with a desired

steeping temperature, steeping time, and drinking temperature for a customized personal experience.

It uses active heating to steep and keep the tea at the desired temperatures and a motor to steep

the teabag.

Active heating is done by comparing the user’s value with a temperature sensor’s reading value and

sends current, via a power relay, through a nichrome wire when the temperature falls below a threshold

value.

It will use a DC motor and an H-bridge to reel the tea bag up and down and will use the user’s steep

time to decide when to turn the motor on. The user’s inputs will be obtained by either an LCD screen

with buttons or a Bluetooth App.

1.2 High Level Requirements
 Thermos must be able to automatically brew tea with the user either pressing buttons or using

the Bluetooth connected phone app.

 Thermos must keep water at desired comfort level ranging from 70-110℉ for up to 20 min

ideally.

 Thermos must be able to operate from battery to keep it mobile.

2 Design
 In this section we will be discussing the various design processes we undertook to complete our

tea brewer. We broke up in the same way we did with our block diagram being modularly with the first

2

section dealing with the Bluetooth and the associated software. We will then discuss the microcontroller

and all control components, and then the power. Then finally we will discuss the physical design.

2.1 Circuit Schematic

Figure 1 Full Circuit Schematic

Figure 1 above shows all the design work done for the circuit schematic. Including boxes

splitting up the circuit into four different blocks. In box 1 there is the 12v supply with the relay

connections for the nichrome heating element along with the 12-5v voltage regulator. To connect the

12V supply to the PCB board a simple DC barrel-jack will be used. From there the 12v signal is split to a

wire pad that will connect to an external relay and then to the input of our LM7805 voltage regulator.

Lastly, capacitors were added to the input and output terminals of the regulator to stabilize the voltages

1.

2.

3.

4.

3

and were placed according to the datasheet.[1] The purpose for the LM7805 is to supply power to our

microcontroller, other IC chips, and LCD screen that require 5v.

Box three contains the 5-3.3v Voltage regulator. This regulator is the LD1117 model and like the

LM7805 in box one will have input and output capacitors as specified in the datasheet.[2] The reason

for the LD117’s implementation is for our supply voltage for the HM-10 Bluetooth chip and MLX90614 IR

temperature sensor. The design decision for a voltage regulator over a resistor voltage divider circuit

was the issues with injecting more heat into the system. Since a resistive heating element produces

power in heat equal to the current squared times the resistance or 𝑃 = 𝐼2𝑅. [3]

Box three contains the H-bridge motor controls that will control the ascent and descent of our

tea bag. A control signal is passed through a SN7400 NAND gate chip where the signal is split into two.

One that is inverted, and one that is not. This is necessary for our SN754410 H-Bridge IC chip as it

requires two signals to operate.[4] In addition, a third signal is passed to the H-Bridge chip as an enable

bit. The two signals from the NAND chip work in conjunction with one another and give direction to

which way the DC motor should spin. If signal A is high and B is low the motor will spin one direction,

and if reversed the motor will also spin in the reverse direction. This allows us to use the motor as a reel

system for the tea bag. Raising and lowering it into the water at specified times. The implementation of

the NAND gate has been added after the design review due to a misunderstanding of the H-bridge

datasheet.

Lastly box four which houses the microcontroller, wire pads for the buttons, LCD, temperature

sensor, Bluetooth, analog inputs, the encoder connections, LEDs, along with the communal ground

plane. The microcontroller that is used in our design is the ATMEGA 328P with a 28-pin configuration.

This was used as it was low power and gave us plenty of processing power for the sensors. Connected

to the digital I/O pins are five buttons; four for the user interface, and one for the code’s system reset.

Also, three status LEDs that let the user know what part of the brewing cycle the thermos is in. In

addition, the control signals for the motor, relay, and data from the encoder are connected via the

digital I/O. Next the analog I/O pins have two pins that are used for the communication with the LCD

display and the temperature sensor. The two devices can share the same pins due to the I2C bus on

analog pins four and five. With the MCU set up as a master and the LCD and temperature sensor set up

as slaves. The MCU can communicate to each device individually using their slave identification. This

allows us to use less pins on our board in case more devices need to be added. There are then four

excess analog pins that are connected to a wire pad in case components need to be added in the future.

Finally, a crystal oscillator is connected using the ATMEGA’s data sheet, along with a inductor/capacitor

circuit for the analog voltage input.[5]

4

2.1 PCB

Figure 2 Final PCB Design

By using the circuit schematic shown in figure 1 the following PCB board was made as seen in

figure 2. The PCB is a 5-inch by 2-inch design to fit in our electrical housing box to put a gap between

the PCB and LCD screen for buttons to be mounted. The board uses a single large grounding plane.

Since there is no component with a necessity on high accuracy precision there is no downfall to making

a ground plane this way. Instead it allows for easier routing of the ground connections.

2.2 User Interface
There are two (2) ways for users to input a desired steep temperature, steep time, and drinking

temperature. The first way is through the navigation of the LCD screen via four (4) buttons. The other

way is through a phone application that will communicate with the microcontroller via Bluetooth.

2.2.1 Design Considerations of LCD Screen and Buttons

A 20 x 4 LCD with and I2C adapter was chosen to reduce the number of pins required from six

(6) to two (2): SCL and SDA.

How many buttons to use:

Minimum buttons for the user to easily understand and to progress through different screens:

1. Back

2. Decrease value

3. Increase value

4. Next/Submit

States/different screens (see appendix C):
1. Steep Temperature Input
2. Steep Time Input
3. Drink Temperature Input
4. Verification

5

Size of LCD screen (see fig. 3-7):

The largest characters on a single screen: Verification Screen

A total of four (4) lines are needed (see fig. 7):

 Three (3) lines for each input variable (steep temperature, steep time, drink temperature)

 One (1) line for prompting an option to go back to edit values or submitting values to

microcontroller.

The width consists of twenty (20) characters:

 Input variable name consists of ten (10) characters:

 “Drink” and “Steep” are both five (5) characters long

 “Temp” and “Time” are both (4) characters long

 A single (1) space character

 Units will consist of a maximum of five (5) characters:

 The units for temp is “(F)” which is three (3) characters long

 The units for time is “(min)” which is five (5) characters long

 Additional spaces and special characters for easy interface to read

Design Layout for LCD Screen:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

3

4

Figure 3. 20 x 4 Character Screen

S T E E P T E M P (F) : 1 8 5

 N E X T >

Figure 4. Steep Temperature Input Layout

S T E E P T I M E (M I N) : 4

< B A C K N E X T >

Figure 5. Steep Time Input Layout

D R I N K T E M P (F) : 9 0

< B A C K N E X T >

Figure 6. Drink Temperature Input Layout

6

S T E E P T E M P (F) : # # #

S T E E P T I M E (M I N) : #

D R I N K T E M P (F) : # #

< B A C K S U B M I T >

Figure 7. Verification Layout

2.2.2 Design Considerations for Phone Application

The phone application will transmit all three (3) of the user’s custom values, in the order of the state

diagram, in a form a string and separate them by the comma character. The microcontroller will utilize

the comma character and separate the string into three (3) substrings and convert them into its

corresponding integer variables. After obtaining integer values from the phone app, the state diagram

will transition directly to verification screen. This accounts for errors that may occur either by corruption

of data or user error of hitting the transmit button when not ready.

The data will be sent to a HM-10 Bluetooth chip that utilizes the Universal Asynchronous

Receiver/Transmitter (UART) protocol. It converts the incoming bytes of data into a serial bit stream

with a start bit and a stop bit. Since it is asynchronous, there is no incoming clock signal. Instead, the

UART generates its clock internally to the microcontroller and synchronizes with the data stream’s start

bit [6]. For this to happen, the receiver would need to know the baud rate ahead of time, which was

initialized as 9600.

The phone application interface is constructed using the MIT App Inventor online application [7]. To use

the functionality of BLE devices, a separate extension had to be downloaded and installed [8].

User Interface

It will consist of thirteen (13) important features (see fig. 13):

(1) Scan for DSD TECH Button: Click this button to scan for “DSD TECH”, which is the name of or

Bluetooth module. Clicking this button generates and displays a list of all nearby BLE devices.

(2) Stop Scan Button: Click this button to stop the list from scrolling.

(3) Connect Button: Clicking this button establish a connection to the BLE device.

(4) Disconnect Button: Clicking this button will disconnect the phone app from the selected BLE device.

(5) Status:

a. Scanning: Scanning for all nearby BLE devices

b. Stopped Scanning: Stop scanning and updating list of all nearby BLE devices

c. Connected: Successfully connected to the Bluetooth device.

d. Not Connected: Unsuccessfully/not connected to any Bluetooth device.

(6) Bluetooth Device: Displays which BLE device is connected to account for any user error in choosing

the BLE device.

(7) Steep Temperature Slider Value Text Box: numerical value read from the slider (4). The default value

of 185°F is the suggested temperature value designated by us.

7

(8) Steep Temperature Slider: an interactive module that slides left (to decrease) or right (to increase)

the user’s desired steep temperature. The default position of 185°F, the minimum value of 160°F

and maximum value of 210°F is designated by us.

(9) Steep Time Slider Value Text Box: numerical value read from the slider (6). The default value of 3min

is the suggested steep time value designated by us.

(10) Steep Time Slider: an interactive module that slides left (to decrease) or right (to increase) the user’s

desired steep time in minutes. The default position of 3min, the minimum value of 2 min and

maximum value of 10 min is designated by us.

(11) Drink Temperature Slider Value Text Box: numerical value read from the slider (8). The default value

of 90°F is the suggested drink temperature value designated by us.

(12) Drink Temperature Slider: an interactive module that slides left (to decrease) or right (to increase)

the user’s desired steep temperature. The default position of 90°F, the minimum value of 70°F and

maximum value of 110°F is designated by us.

(13) Submit button: Once the user has chosen the desired values and is connected to the HM-10

Bluetooth module, this button will send the values to the microcontroller.

2.3 Design Considerations for Control Software
 The next system we will be focusing on is the control software loops. We will be running two

separate control loops. One will be for the motor control and the other will be our temperature control.

Both control loops will be proportional control and their values determined by one sensor.

 The first control system we will discuss is the motor control. We knew in order to introduce the

tea bag to the water we needed a solution which would be able to raise and lower the tea bag outside of

the cup and it made sense to us to have a DC motor do this as we will be able to easily power it with the

5V line we are using to power the majority of our other modules. The motor control consisted of the

following components: 7400 NAND gate, SN754410 H-bridge chip, a DC motor, Keyes – 040 Rotary

Encoder, and a potentiometer. The latter two were added late into the design of this module and

resulted in us having to make a circuit differ a bit from what we had originally intended. We decided on

the addition of the rotary encoder due to the control loop being open without some feedback on the

motor’s position and if we had used a timer as we had originally planned, there is a chance after

repeated usages we would be off by quite a bit and have no way to tell if the motor had been pulled

manually by the user. With the problem of position out of the way our next major problem was the

motor speed. We found through testing the motor and the encoder through Arduino that the encoder

was unable to update fast enough to keep track of the motor at full speed. This in turn required us to

create a new motor circuit which included a potentiometer between the two leads of the motor in order

to limit current into the motor and slow it down to the point where we could efficiently measure the

number of rotations.

 The next control system which we had to implement was the heating element control. As seen

in the figure 1 in order to control the heating element we chose to use the circuit in only an ON/OFF

mode where the relay completes the heating circuit. We were able to use this since as seen in Appendix

1 we are able to do this since it takes a very long time for the water to heat up as seen in that test. We

are able to read the temperature using an IR sensor specifically the MLX90614. This gave us some

8

flexibility when it came to how to implement the sensor. It gives both object and ambient temperature

which gave us flexibility on placement since on the time of choosing a part we were unsure of the

placement of the sensor. The next portion of the heating element control was ensuring we had a timer

so we knew when to change the desired temperature. The Appendix C diagram shows how we needed a

timer to reach the next state being the raise tea bag state. We did this in Arduino using the pre-made

millis() function which returns the time the processor has been running in ms and recording a start time

when states change and then comparing a new millis() entry to the start time entered. This allowed us

to get a timer for our control software. These made our requirements for the control software given in

Appendix A.

2.4 Design Considerations for Power
 The next major hardware module we needed to design was the power module. We needed a

power supply which would meet our high level requirements of being both portable and able to power

resistance heating wire. This left us with a problem of weight and size. It was hard to find a battery

option which is both above 5V and compact. We wanted a Lithium Ion battery so the brewer was

rechargeable. We ended up finding one which is 12V, 9800mAH, and has 2A max. This allowed us to use

this to directly power the resistance wire and still have enough current draw left to power our circuit

components. As for other components for power we needed two separate voltage levels to power our

remaining circuit components. For this we used a series of voltage dividers and capacitors shown in

Figure 1 .

2.5 Physical Design

Figure 8 Finished Cup Design

9

Shown in figure 8 is the outcome of our physical design work. The design consists of two cups;

an outer and inner cup. The outer cup will act as a shell for the design and will be where most of our

external electronics are mounted. The cup has a 5-inch diameter and a 7-inch height. The inner cup is

where the tea will be stored and flares out at the opening to allow for a portion of it to rest on the top

of the outer cup. This flaring allows us to place the lid on top and with pressure from the screw on lid

can keep it secured to the assembly without the need for screws or other methods of attachment. This

promotes ease of access to the cup and lets the user take the inner cup out easily to wash it. The inner

cups dimensions will be a 5-inch height (flare included) and a 3-inch diameter. This will house roughly

16-20 ounces of water depending on how far up the flared cone the water is poured. In between the

outer and inner cup there are plans to add pipe insulation to protect the outer cup from the heat

produced by the inner cup and nichrome wire. This is a new addition since the design document that

was thought of for added thermal protection.

 The handle seen in figure 8 is a simple design with a 4-inch inner gap height, a 2-inch inner gap

width, and a half-inch thickness. This was chosen arbitrarily as a comfortable distance for hands. The

handle is screw mounted to the outer cup.

 At the base of the outer cup is where a nichrome wire heating element will be mounted. For

ease of access the plan is to have the outer cup’s base be screw mounted with flush screw heads to

make access to the nichrome element easy. This element will fit in a 3-inch diameter with a 2-inch

height and will provide the heating for the inner cup.

 Lastly, the electrical box can be seen in figure 8. This box will be mounted to the side of the cup

and will have a 5x5x2(LxWxD)-inch design. Inside this is where the battery, PCB, relay, temperature

sensor, encoder, and LCD screen along with LEDs will be mounted. In addition, the temperature sensor

will be mounted on the connecting wall to the cup with a hole through both the box and outer shell of

the cup to measure the inner cup directly with IR.

3. Design Verification
 This section we will use to discuss our testing methods and our verification of the various

components. We will begin with the LCD screen and buttons being verified together through the usage

of the software in the user input stage. Next we will discuss our testing methods of the control software

and that has an overarching verification of our other components.

10

3.1 LCD and Buttons Verification

Figure 9. Testing of the LCD Screen

Figure 10. Testing of the Increase button (from 185 to 186)

11

Figure 11. Testing of the Next Button (Steep Temp Input Screen to Steep Time Input Screen)

Figure 12. Verification Screen

12

3.2 Phone Application Verification

Numbers correspond to section 2.2.2 User Interface Design.

Figure 13. Phone App Interface

3.3 5 V Voltage Regulator

 For this test we set up the circuit shown in Appendix *. We then sweep the voltage from 12-14V

the following table recorders the data we have on that.

Table 1 5V Unit Test Results.

Vin (V) Vout (V) Iout (A)

12 5.1 0.79

12.5 5.1 0.8

13 5.2 0.78

13.5 5.3 0.77

14 5.3 0.78

13

3.4 3.3 V Voltage Regulator

 For this test the circuit was set up as seen in Figure 1. We then swept the voltage from 5.5v to

4.5v since the input of the device would be the direct output of the 5v voltage regulator.

Table. 2 3.3V Unit Test Results

Vin(V) Vout(V)

5.5 3.3

5.3 3.3

5 3.3

4.8 3.3

4.6 3.3

4.5 3.3

3.5 Control Software & Control Components Verification

 In order to prove the software works we took a video of the operation of the software while

hooked up according to the circuit shown in Figure 1.

Software Test: https://www.youtube.com/watch?v=M04rv0zZy5s

IR Sensor Test: https://www.youtube.com/watch?v=5fE5v2imhqQ

3.6 Nichrome Wire

 For this test the nichrome wire was wired in directly to a 12v power supply and run

continuously. The wire used was 30 gauge that was 15 inches in length and at the 12v input would

consume 1.42A. From the data shown below the device was found to raise the water temperature by

2˚F every 5 min.

https://www.youtube.com/watch?v=M04rv0zZy5s
https://www.youtube.com/watch?v=5fE5v2imhqQ

14

Figure 15. Temp Results

4. Costs

4.1 Parts

4.2 Labor
Table 4 Labor Costs

Labor Hours $/hr Laborer(s) Total

100 $25.00 3 $7,500.00

Table 3 Parts Costs

Part Retail Cost ($) Actual Cost ($)

12V Li-Ion Battery 40.99 40.99

5V Voltage Regulator 5.99 5.99

3.3V Voltage Regulator 1.95 1.95

Power Relay 5.95 5.95

30 Gauge Nichrome Wire 6.89 6.89

DC Gear Motor 3.95 3.95

Encoder 1.99 1.99

H Bridge 6.50 6.50

NAND chip 0.95 0.95

HM-10 Bluetooth Chip 9.99 9.99

IR Temperature Sensor 19.95 19.95

20x4 LCD 8.95 8.95

Push Button (4) 0.85 3.40

LED (3) 0.95 2.85

ATmega328p Microcontroller 2.20 2.20

Total 122.50

15

5. Conclusion

5.1 Accomplishments
We have successfully integrated the different modules to perform the task of brewing tea with custom

temperature and time values- all while maintaining its portability. The different modules include:

 Bluetooth module to transmit custom values from a phone application to the microcontroller

 Sensor module to constantly read current temperature readings of the inner cup

 Motor control module to raise and lower the tea bag according to the encoder value

 Heating module to turn on when the temperature

 Controller module to send proper signals to all other modules

 Power module to power on all the other modules

5.2 Uncertainties
During the testing of the motor, depending on how the tea bag is wrapped around the motor affected

the encoder value. The distance between the temperature probe and inner cup affected the accuracy.

The ideal distance was marked, but mounting the probe into the hole of the outside cup shifted the

probe. The amount of liquid that would leak from the inner cup to the outer cup would vary depending

on how well the inner cup sat in the insulation.

5.3 Ethical considerations
As for the safety of our design we will be greatly concerned with our Li-Ion battery. We will
have to make sure to keep it within the correct operating temperatures, 0 ~ 45℃ for charging
and -20 ~ 60℃ for discharging. We will attempt to avoid these risks by mounting the battery in
the handle the area furthest from the bottom where the heating elements are mounted in
order to give us a lot of separation in case of any failure in the insulation around the heating
elements.

 Along with this we know as state in the article “Safety of Lithium-ion batteries” [9] that as
well as operating temperature, we must also ensure we regulate the current flow to and from
the battery. The specific values are 6A maximum continuous discharge/charge. We want to
ensure we are following the IEEE Ethics part 9 [10] “avoid injuring others, their property,
reputation, or employment by false or malicious action”. Any mishaps with the battery would
certainly cause injury or property damage. This is why we will take our testing very seriously
with the battery as we are aware if mishandled these batteries are very dangerous. We are
going to ensure that these values are not reached in our circuit by testing the circuit rigorously.

 Some important ethical issues intertwined with safety also are included. We have to make
sure our heating element is properly insulated. We want to ensure that is does not cause any
harm to others as state in the ACM Code of Ethics “loss of property, property damage, or
unwanted environmental impacts.” [11] In our case if we do not properly make the heating
element safe for the user to not burn or start a fire. We can do this by properly regulating the
voltage across our heating element. We will include a safety that will shut off power to the
heating element if a certain voltage is reached. This will ensure the heating element, regardless
of sensor failure, will not reach certain temperatures.

16

 We will also to make sure our hot tea is safely insulated and safe to drink. Mention in the
IEEE code of conduct it is stated we are “to hold paramount the safety, health, and welfare of
the public” [10] . We must do this by ensuring that our temperature sensors are functioning at
all times to alert the user if the drink is too hot to drink. If our microcontroller receives data
from our sensors which is not within its set range the user will be notified, also the sensor we
are using sends a fault signal and this will also notify the user notified in this case that the
sensor isn’t working, and all heating elements will be shut off.

 We also want to ensure all testing in the lab is safe. We are going to test all parts of our design as we
receive them after buying them to verify they meet rated criteria. After this we will test our design
modularly without attaching to PCB. Then integrate it outside of the PCB, then finally we will integrate
our design and test again to ensure our integration was conducted properly. Throughout this process we
will have to test the individual components and modules in a safe, controlled way. We will ensure all
rated constraints are not exceeded in our tests to make sure we minimize part failure. We also will
isolate our heating element in a way such that it will not cause harm to us or our testing equipment as
well as other students in the lab.

5.4 Future work
For future work, we would like to improve on the aesthetics by reducing the size of the electrical box.

This would require the sacrifice of the LCD, LEDs, and buttons. In return, it would allow us to

concentrate on improving the Phone app’s interface to display everything the LCD would have. We

would also need to find a smaller battery with matched power of the current battery and an optimized

PCB to fit in a smaller housing unit.

17

References

[1]’LM7805 Datasheet’. [online]. Available.

https://www.sparkfun.com/datasheets/Components/LM7805.pdf [Accessed 3/21/2018]

[2]’LD117V33 Datasheet’. [Online] Available

https://www.sparkfun.com/datasheets/Components/LD1117V33.pdf [Accessed 3/21/2018]

[3]’Resistive heating explained in details’. 7/27/2011. [Online]. Available http://electrical-engineering-

portal.com/resistive-heating-explained-in-details [Accessed 3/21/2018]

[4]’SN754410 Quadruple Half-H Driver’ [Online] Available

http://www.ti.com/lit/ds/symlink/sn754410.pdf [Accessed 3/21/2018]

[5]’ATmeage328/P Datasheet Complete’ [Online] Available

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-

ATmega328-328P_Datasheet.pdf [Accessed 3/21/2018]

[6]‘USART vs UART: Know the difference’ [Online] Available: https://www.edn.com/electronics-

blogs/embedded-basics/4440395/USART-vs-UART--Know-the-difference [Accessed: 2/4/2018]

[7]‘BluetoothLE’ [Online] Available: http://iot.appinventor.mit.edu/#/bluetoothle/bluetoothleintro

[Accessed: 3/20/2018]

[8]‘How To Build Custom Android App for your Arduino Project using MIT App Inventor’ [Online]

Available: www.howtomechatronics.com/tutorials/arduino/how-to-build-custom-android-app-for-your-

arduino-project-using-mit-app-inventor [Accessed: 2/4/2018]

[9]‘Safety of lithium-ion batteries’ June 2013 [Online]. Available:

http://www.rechargebatteries.org/wp-content/uploads/2013/07/Li-ion-safety-July-9-

2013Recharge-

.pdf [Accessed: 2/4/2018]

[10]’IEEE Code of Ethics’ [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html [Accessed: 2/5/2018]

 [11]’ACM Code of Ethics and Professional Conduct’ 10/16/92. [Online]. Available:

 https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct [Accessed:

2/2/2018]

https://www.sparkfun.com/datasheets/Components/LM7805.pdf
https://www.sparkfun.com/datasheets/Components/LD1117V33.pdf
http://electrical-engineering-portal.com/resistive-heating-explained-in-details
http://electrical-engineering-portal.com/resistive-heating-explained-in-details
http://www.ti.com/lit/ds/symlink/sn754410.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
https://www.edn.com/electronics-blogs/embedded-basics/4440395/USART-vs-UART--Know-the-difference
https://www.edn.com/electronics-blogs/embedded-basics/4440395/USART-vs-UART--Know-the-difference
http://iot.appinventor.mit.edu/#/bluetoothle/bluetoothleintro
http://www.howtomechatronics.com/tutorials/arduino/how-to-build-custom-android-app-for-your-arduino-project-using-mit-app-inventor
http://www.howtomechatronics.com/tutorials/arduino/how-to-build-custom-android-app-for-your-arduino-project-using-mit-app-inventor
http://www.rechargebatteries.org/wp-content/uploads/2013/07/Li-ion-safety-July-9-2013-Recharge-.pdf
http://www.rechargebatteries.org/wp-content/uploads/2013/07/Li-ion-safety-July-9-2013-Recharge-.pdf
http://www.rechargebatteries.org/wp-content/uploads/2013/07/Li-ion-safety-July-9-2013-Recharge-.pdf
http://www.rechargebatteries.org/wp-content/uploads/2013/07/Li-ion-safety-July-9-2013-Recharge-.pdf
http://www.rechargebatteries.org/wp-content/uploads/2013/07/Li-ion-safety-July-9-2013-Recharge-.pdf
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct
https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct
https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct

18

Appendix A Requirement and Verification Table
Table X System Requirements and Verifications

Buttons and LED

Requirements Verification
Verification

status
(Y or N)

1. Buttons must be easily
press able and
accessible by the user.

2. LED must be visible from
up to 15 ft away.

1A. Do qualitative testing on the buttons and LEDs
making sure they work.
1B. Use a voltmeter to test high side voltage to be
within 5±1%V.
2A. Stand at a distance of 15ft away and determine
if the LED are visible.

Y

Y

Y

LCD Display

Requirements Verification
Verification

status
(Y or N)

1. LCD must be easy for
user to understand with
a maximum of 80
characters.

2. LCD screen will show a
readout of the current
temperature and other
valid info in the standby
phases.

1A. Ensure LCD is legible and has good contrast
between background and characters, and also
having proper fitting words.
2A. While doing the verification for the design code,
and for 1A the screen will be qualitatively analyzed
to make sure the proper data is displayed.

Y

Y

HM10 Bluetooth Controller

Requirements Verification
Verification

status
(Y or N)

1. Can operate with
current of around
8.5mA during active
state.

2. Maintain thermal
stability below 125˚C

3. Communicates in a
range of 5-10m.

1A. during active state, measure voltage drop across
1k resistor.
2A. During verification of 1A use an IR thermometer
to read the temperature of the device.
3A. Connect and pair the device with the phone and
measure the range between them and check to see
if the temperature values transmitted from the
phone to the device at the 10m maximum..

Y

Y

Y

“Thermos” Phone app

Requirements Verification
Verification

status
(Y or N)

1. Phone app must be
usable on an android
phone and have an easy
to follow UI.

2. The phone app must be
able to generate and

1A. Qualitatively assess the accessibility of the app
on a group members phone and be able to use the
app’s UI to control the temperature for
drinking/steeping and steeping time.

Y

Y

19

submit values via
Bluetooth for the steep
temp/time, and drinking
temp.

2A. While verifying 1A ensure that the phone app
can transmit the data via Bluetooth to our device
and have the data displayed on the LCD screen.

Microcontroller

Requirements Verification
Verification

status
(Y or N)

1. The microcontroller
must be able to take in
sensor data from the IR
sensor and use that to
control voltage across
the heating element via
the relay. This must
work with no user input
controlling the relay.

2. Ensure that the
microcontroller can
receive data from the
Bluetooth phone app.

3. Keep current draw
under .3 mA.

1A. We can verify this by testing the temperature
sensor on a controlled surface with another IR
thermometer to verify the accuracy. We can then
change the temperature and see if the voltage on
the relay changes accordingly.
2A. Set phone app on and have it transmit a series
of commands to the microcontroller. Then verify
that these specific commands are read through a
simple program by switching the digital relay of our
circuit on and off.
3A. During normal operation we will monitor the
current draw from the power source powering the
chip and ensure we do not exceed .3 mA.

Y

Y

Y

Control Software

Requirements Verification
Verification

status
(Y or N)

1. Read temperature
sensor data and be able
to compare it to values
obtained from the two
different UI to check if
certain conditions have
been met and respond
accordingly.

2. Read encoder data to
determine when the
motor has spun the
required distance to
steep the tea bag.

3. Display requested
variables on the LCD
display.

4. Take in data from the
Bluetooth device and be
able to integrate the
data to set bounds on

1A. During verification of the temperature sensor
check to make sure that the data being read is able
to be stored in a variable and use conditionals and
output if the two values match to an LED and see if
it turns on.
2A. Hook the encoder up to the microprocessor and
turn it until a set value is reached. Upon reaching
the value have the controller turn on an LED.
3A. Send words to the LCD screen and see if they
are displayed properly.
4A. Use the phone app to set values for our thermos
and use the serial printout that the Arduino code
must verify that the values sent from the phone app
match the values received.
5A. with the Nichrome wire send a signal to the
motor and see if the conditional n the software
turns off the relay disconnecting the nichrome wire
from power.
6A. While verifying 5A see if the relay is responsive
to the microcontrollers command.

Y

Y

Y

Y

Y

Y

20

the steeping temp/time
and drinking temp.

5. Ensure that the motor
and Nichrome wire are
never activated at the
same time giving
priority to the motor.

6. Can control the relay for
the nichrome wire
based off the inputs
from the temperature
sensor.

7. Send correct signals to
the H-bride and NAND
gate chips to properly
drive the motor.

7A. Send signals to the enable pin of the H-bride
chip and send a high and a low signal to the NAND
gate and verify that the motor rotates in two
directions.

Y

Nichrome Heating Element

Requirements Verification
Verification

status
(Y or N)

1. Ensure tolerance
analysis is current and
warm a 16 oz. cup of
water 2˚F in 9 minutes.

2. Maintain a custom
drinking temperature
for 20 min ranging from
70-110 ˚F with a ±2˚F
allowable error.

3. Draw less than or equal
to 1.5A of current
through itself.

1A. Run the nichrome wire for 9 minutes and take
temperature readings with an IR thermometer
during that interval of time.
2A. During testing of 1A have water within the range
specified and verify that the thermal stability could
be maintained within those 20 min.
3A. During Verification of 1A and 2A read the
current draw from the power supply.

Y

Y

Y

IR Temperature Sensor

Requirements Verification
Verification

status
(Y or N)

1. The sensor must be
accurate to within 2˚F at
the center point of the
sensor.

1A. In conjunction with an IR thermometer the
temperature of the water inside the cup will be
measured. The two read values will be compared
and determine the accuracy of our IR temperature
sensor.

Y

Rotary Encoder

Requirements Verification
Verification

status
(Y or N)

1. Be able to detect a
change in rotational

1A. Hook up the rotary encoder to our
microcontroller and manually rotate the encoder.

Y

21

direction and transmit
the data to our
microcontroller.

1B. Determine if the signal from the rotary encoder
gives insight into a direction via positive numbers
going clockwise and negative numbers going
counter clockwise.

Y

LM7805 5V voltage regulator

Requirements Verification
Verification

status
(Y or N)

1. Provide 5V ±.5% from a
11.5-12.5 V source.

2. Maintain thermal
stability below 125˚C

1A. Measure the output voltage using a voltmeter
and ensure the output is within the specified range.
2A. During verification of 1 use and IR thermometer
to read the temperature of the device to ensure it is
below the threshold.

Y

Y

LD117 3.3V Voltage Regulator

Requirements Verification
Verification

status
(Y or N)

1. Provide 3.3V ±.5% from
the output of the
LM7805 Voltage
regulator.

2. Maintain thermal
stability below 125˚C

1A. Measure the output voltage using a voltmeter
and ensure the output is within the specified range.
2A. During verification of 1 use and IR thermometer
to read the temperature of the device to ensure it is
below the threshold.

Y

Y

12V Lithium Ion Battery

Requirements Verification
Verification

status
(Y or N)

1. Maintain thermal
stability below 100˚F

2. Provide up to 1.9 A of
power for a 20 min
period.

3. Provide 12.6 to 10.8V
for 9800mAh

1A. Use an IR thermometer to ensure the levels
never go above that value during operation.
2A. during verification of nichrome heating element
use a current meter and voltage probe connected to
oscilloscope to make sure 12v and up to 1.9A are
provided.
3A fully charge batter then discharge at 300 mA and
record time it takes for the battery to completely
drain.

Y

Y

Y

22

Appendix B Block Diagram

23

Appendix C State Diagram

24

Appendix D Software Code for Phone Application

25

Appendix E Phone App Process

1. Load up the thermos app and ensure the Bluetooth is enabled.

2. Click on the “Scan for DSD TECH” button and click “Stop Scan” when DSD TECH
appears on the list.

3. Select DSD TECH from the list and hit the “Connect” button.

4. Verify the correct Bluetooth Device. Choose custom Steeping temperature, Steep
Time, and Drinking Temperature and click submit.

26

Appendix F Software Code for Microcontroller
#include <Wire.h>

#include <LiquidCrystal_I2C.h>

#include <SoftwareSerial.h>

#include <stdlib.h> /* atoi */

#include <Adafruit_MLX90614.h>

#include <SparkFunMLX90614.h> // SparkFunMLX90614 Arduino library

IRTherm therm;

//initialize HM-10

SoftwareSerial mySerial(0, 1);

//RXD: 1

//TXD: 0

//GND: GND

//VCC: 3.3V

// Set the LCD address to 0x27 for a 20 chars and 4 line display

LiquidCrystal_I2C lcd(0x27, 20, 4); //20 columns, 4 lines

//GND:GND

//VCC:5V

//SDA: Analog pin 4

//SCL: Analog pin 5

//IR sensor setup

Adafruit_MLX90614 mlx = Adafruit_MLX90614();

int ProbeTemp;

//set default customizable values

int SteepTemp = 79; //185

int SteepTime = 1; //4

int DrinkTemp = 79; //90

String number;

27

//microcontroller pins

const int backPin = 10;

const int decrPin = 11;

const int incrPin = 12;

const int nextPin = 8; // 13

const int greenLEDPin = 2;

const int yellowLEDPin = 3;

const int redLEDPin = 4;

const int pinA = 5; // CLK on KY-040

const int pinB = 7; // DT on KY-040

const int motorconPin = 9;

const int motorenPin = 13; //8

const int nichPin = 6;

//encoder set up

volatile int encoderPosCount = 0;

volatile int aVal;

volatile int pinALast;

int TeaPos = -40;

boolean bCW;

//set default state variables

static unsigned int state;

int backState = 0;

int decrState = 0;

int incrState = 0;

int nextState = 0;

boolean flag = false;

//timer default

unsigned long current_time = 0;

unsigned long start_time = 0;

unsigned long steep_time = 0;

28

//

void setup()

{

 //initialize buttons

 pinMode(backPin,INPUT);

 pinMode(decrPin,INPUT);

 pinMode(incrPin,INPUT);

 pinMode(nextPin,INPUT);

 pinMode(pinA, INPUT);

 pinMode(pinB, INPUT);

 pinMode(redLEDPin, OUTPUT);

 pinMode(yellowLEDPin, OUTPUT);

 pinMode(greenLEDPin, OUTPUT);

 pinMode(nichPin, OUTPUT);

 pinMode(motorconPin, OUTPUT);

 digitalWrite(motorconPin,LOW);

 pinMode(motorenPin, OUTPUT);

 digitalWrite(motorenPin,LOW);

 pinALast = digitalRead(pinA);

 // initialize the LCD

 lcd.begin();

 lcd.backlight(); // Turn on the blacklight

 state = 1;

 Serial.begin(9600);

 mySerial.begin(9600);

 mlx.begin();

}

//

29

void loop()

{

//bluetooth module

 String string;

 if (Serial.available())

 {

 Serial.print("blah");

 //mySerial.print(string);

 }

 if (mySerial.available())

 {

 //Serial.println("2");

 string = mySerial.readString();

 int CommaIndex = string.indexOf(',');

 int SecondCommaIndex = string.indexOf(',', CommaIndex+1);

 String s1 = string.substring(0, CommaIndex);

 String s2 = string.substring(CommaIndex+1, SecondCommaIndex);

 String s3 = string.substring(SecondCommaIndex+1);

 Serial.println("String: ");

 Serial.println(string);

 Serial.println(CommaIndex);

 Serial.println(SecondCommaIndex);

 Serial.println("Testing Strings:");

 Serial.println(s1);

 Serial.println(s2);

 Serial.println(s3);

 int n1 = atoi(s1.c_str());

 int n2 = atoi(s2.c_str());

 int n3 = atoi(s3.c_str());

 Serial.println("Testing Integers:");

30

 Serial.println(n1);

 Serial.println(n2);

 Serial.println(n3);

 SteepTemp = n1;

 SteepTime = n2;

 DrinkTemp = n3;

 state = 4;

 }

 backState = digitalRead(backPin);

 decrState = digitalRead(decrPin);

 incrState = digitalRead(incrPin);

 nextState = digitalRead(nextPin);

//State Definitions

 switch (state)

 {

 case 1: //steep temp

 //increase or decrease button pressed

 digitalWrite(greenLEDPin, LOW);

 digitalWrite(yellowLEDPin, LOW);

 digitalWrite(redLEDPin, HIGH);

 if(incrState == HIGH && (SteepTemp+106) < 210)

 {

 SteepTemp = SteepTemp + 1;

 delay(200);

 }

 if(decrState == HIGH && (SteepTemp+106) > 150)

 {

 SteepTemp = SteepTemp - 1;

 delay(200);

 }

31

 else

 {

 SteepTemp = SteepTemp;

 }

 //print steep temp value on screen

 lcd.setCursor(0,0); //index starts at (0,0):(x,y) at top left of screen

 if(SteepTemp >= 100)

 {

 lcd.print("Steep Temp(F): " + String(SteepTemp));

 }

 else

 {

 lcd.print("Steep Temp(F): " + String(SteepTemp));

 }

 lcd.setCursor(0,3);

 lcd.print("<BACK NEXT>");

 //next or back button pressed

 if(nextState == HIGH)

 {

 state = 2;

 delay(200);

 lcd.clear();

 }

 else

 {

 state = 1;

 }

 break;

/**/

 case 2: //steep time

 //increase or decrease button pressed

 digitalWrite(greenLEDPin, LOW);

 digitalWrite(yellowLEDPin, LOW);

32

 digitalWrite(redLEDPin, HIGH);

 if(incrState == HIGH && SteepTime < 10)

 {

 SteepTime = SteepTime + 1;

 delay(200);

 }

 if(decrState == HIGH && SteepTime > 3)

 {

 SteepTime = SteepTime - 1;

 delay(200);

 }

 //print steep time on screen

 lcd.setCursor(0,0); //index starts at (0,0):(x,y) at top left of screen

 if(SteepTime >= 10)

 {

 lcd.print("Steep Time(min): " + String(SteepTime));

 }

 else

 {

 lcd.print("Steep Time(min): " + String(SteepTime));

 }

 lcd.setCursor(0,3);

 lcd.print("<BACK NEXT>");

 //back or next button pressed

 if(backState == HIGH)

 {

 state = 1;

 delay(200);

 lcd.clear();

 }

 if(nextState == HIGH)

 {

 steep_time = SteepTime * 60000;

 state = 3;

33

 delay(200);

 lcd.clear();

 }

 break;

/***/

 case 3: //drink temp

 //increase or decrease button pressed

 digitalWrite(greenLEDPin, LOW);

 digitalWrite(yellowLEDPin, LOW);

 digitalWrite(redLEDPin, HIGH);

 if(incrState == HIGH && DrinkTemp < 110)

 {

 DrinkTemp = DrinkTemp + 1;

 delay(200);

 }

 if(decrState == HIGH && DrinkTemp > 70)

 {

 DrinkTemp = DrinkTemp - 1;

 delay(200);

 }

 //print drink temp on screen

 lcd.setCursor(0,0); //index starts at (0,0):(x,y) at top left of screen

 if(DrinkTemp >= 100)

 {

 lcd.print("Drink Temp(F): " + String(DrinkTemp));

 }

 else

 {

 lcd.print("Drink Temp(F): " + String(DrinkTemp));

 }

 lcd.setCursor(0,3);

 lcd.print("<BACK NEXT>");

 //back or next button pressed

 if(backState == HIGH)

34

 {

 state = 2;

 delay(200);

 lcd.clear();

 }

 if(nextState == HIGH)

 {

 state = 4;

 delay(200);

 lcd.clear();

 }

 break;

/***/

 case 4: //verification screen

 //print out verification screen

 digitalWrite(greenLEDPin, LOW);

 digitalWrite(yellowLEDPin, LOW);

 digitalWrite(redLEDPin, HIGH);

 lcd.setCursor(0,0); //index starts at (0,0):(x,y) at top left of screen

 if(SteepTemp >= 100)

 {

 lcd.print("Steep Temp(F): " + String(SteepTemp));

 }

 else

 {

 lcd.print("Steep Temp(F): " + String(SteepTemp));

 }

 lcd.setCursor(0,1); //index starts at (0,0):(x,y) at top left of screen

 if(SteepTime >= 10)

 {

 lcd.print("Steep Time(min): " + String(SteepTime));

 }

 else

 {

35

 lcd.print("Steep Time(min): " + String(SteepTime));

 }

 lcd.setCursor(0,2); //index starts at (0,0):(x,y) at top left of screen

 if(DrinkTemp >= 100)

 {

 lcd.print("Drink Temp(F): " + String(DrinkTemp));

 }

 else

 {

 lcd.print("Drink Temp(F): " + String(DrinkTemp));

 }

 lcd.setCursor(0,3);

 lcd.print("<BACK SUBMIT>");

 //if back or next button is pressed

 if(backState == HIGH)

 {

 state = 3;

 delay(200);

 lcd.clear();

 }

 if(nextState == HIGH)

 {

 state = 5;

 delay(200);

 lcd.clear();

 }

 break;

/***/

 case 5: //steep mode

 digitalWrite(greenLEDPin, LOW);

 digitalWrite(yellowLEDPin, HIGH);

 digitalWrite(redLEDPin, LOW);

36

 ProbeTemp = mlx.readObjectTempF();

 //Serial.println(aVal);

 lcd.setCursor(0,0); //index starts at (0,0):(x,y) at top left of screen

 lcd.print("Preparing to Steep..");

 lcd.setCursor(0,1);

 if(SteepTemp >= 100)

 {

 lcd.print("Steep Temp(F): " + String(SteepTemp));

 }

 else

 {

 lcd.print("Steep Temp(F): " + String(SteepTemp));

 }

 lcd.setCursor(0,2);

 if(ProbeTemp >= 100)

 {

 lcd.print("Current Temp(F): " + String(ProbeTemp));

 }

 else

 {

 lcd.print("Current Temp(F): " + String(ProbeTemp));

 }

//Reached Desired Steep Temperature

 if(ProbeTemp == SteepTemp && digitalRead(nichPin)== LOW && flag == false)//steeptemp)

 {

 //Serial.println(ProbeTemp);

 //print LCD screen: "steeping..."

 lcd.setCursor(0,3); //index starts at (0,0):(x,y) at top left of screen

 lcd.print("Steeping... ");

37

 state = 7;

 }

//Colder than Desired Steep Temperature

 else if(ProbeTemp < SteepTemp && digitalRead(motorenPin) == LOW)//SteepTemp)//need to add limit value - how much battery is

consumed to raise temp and be worth it

 {

 //Serial.println(ProbeTemp);

 digitalWrite(nichPin,HIGH); //turn on power relay

 }

//Hotter than Desired Steep Temperature

 else //if((ProbeTemp) > SteepTemp) //need to add limit value

 {

 //Serial.println(ProbeTemp);

 digitalWrite(nichPin, LOW); //turn off power relay

 }

//Reaches Steep Time

 current_time= millis();

 current_time= current_time - start_time;

 Serial.println(current_time/1000);

 if(current_time >= steep_time){

 state = 8;

 }

 break;

/***/

 case 6: //Drink Mode

 digitalWrite(greenLEDPin, HIGH);

 digitalWrite(yellowLEDPin, LOW);

 digitalWrite(redLEDPin, LOW);

 ProbeTemp = mlx.readObjectTempF();

 lcd.setCursor(0,0); //index starts at (0,0):(x,y) at top left of screen

38

 lcd.print("Prepare Drink Temp..");

 lcd.setCursor(0,1);

 if(SteepTemp >= 100)

 {

 lcd.print("Drink Temp(F): " + String(DrinkTemp));

 }

 else

 {

 lcd.print("Drink Temp(F): " + String(DrinkTemp));

 }

 lcd.setCursor(0,2);

 if(ProbeTemp >= 100)

 {

 lcd.print("Current Temp(F): " + String(ProbeTemp));

 }

 else

 {

 lcd.print("Current Temp(F): " + String(ProbeTemp));

 }

 if((ProbeTemp) == DrinkTemp)

 {

 //print LCD screen: "Ready!"

 lcd.clear();

 lcd.setCursor(0,3); //index starts at (0,0):(x,y) at top left of screen

 lcd.print(" Ready!!! ");

 //print LCD screen: "Next button for new cup"

 }

 else if((ProbeTemp) < DrinkTemp) //need to add limit value

 {

 digitalWrite(nichPin,HIGH); //turn on power relay

 }

 else

39

 {

 digitalWrite(nichPin, LOW); //turn off power relay

 }

 break;

/***/

 case 7:

 //motor on to lower teabag

 aVal = digitalRead(pinA);

 if (aVal != pinALast){ // Means the knob is rotating

 // if the knob is rotating, we need to determine direction

 // We do that by reading pin B.

 if (digitalRead(pinB) != aVal) { // Means pin A Changed first - We're Rotating Clockwise

 encoderPosCount++;

 bCW = true;

 } else {// Otherwise B changed first and we're moving CCW

 encoderPosCount--;

 bCW = false;

 }

 Serial.print ("Rotated: ");

 if (bCW){

 Serial.println ("clockwise");

 }else{

 Serial.println("counterclockwise");

 }

 Serial.print("Encoder Position: ");

 Serial.println(encoderPosCount);

 }

 pinALast = aVal;

 if(encoderPosCount > TeaPos)

 {

 digitalWrite(nichPin, LOW);

 digitalWrite(motorenPin, HIGH);

40

 digitalWrite(motorconPin, HIGH);

 }

 else

 {

 digitalWrite(motorenPin, LOW);

 digitalWrite(motorconPin, LOW);

 flag = true;

 start_time = millis();//start timer

 state = 5;

 }

 break;

/***/

 case 8:

 //motor on to raise tea bag

 aVal = digitalRead(pinA);

 if (aVal != pinALast){ // Means the knob is rotating

 // if the knob is rotating, we need to determine direction

 // We do that by reading pin B.

 if (digitalRead(pinB) != aVal) { // Means pin A Changed first - We're Rotating Clockwise

 encoderPosCount++;

 bCW = true;

 } else {// Otherwise B changed first and we're moving CCW

 encoderPosCount--;

 bCW = false;

 }

 Serial.print ("Rotated: ");

 if (bCW){

 Serial.println ("clockwise");

 }else{

 Serial.println("counterclockwise");

 }

 Serial.print("Encoder Position: ");

 Serial.println(encoderPosCount);

41

 }

 pinALast = aVal;

 if(encoderPosCount < 0)// && digitalRead(nichPin) == LOW)

 {

 digitalWrite(nichPin, LOW);

 digitalWrite(motorenPin, HIGH);

 digitalWrite(motorconPin, LOW);

 }

 else

 {

 digitalWrite(motorenPin, LOW);

 digitalWrite(motorconPin, LOW);

 lcd.clear();

 state = 6;

 }

 break;

 }

}

