An LED and Spectroscopy System for Detecting Aflatoxin in Corn

Team 25 -- Jiahui Chen, and Foong Yee Wong ECE 445 Presentation -- Spring 2018 TA: Channing Philbrick

Objective

- Aflatoxins: toxic carcinogens produced by fungi, majorly Aspergillus flavus and Aspergillus parasiticus
- It grows in agricultural crops such as corn, peanuts, and tree nuts [1].
- Exposure to Aflatoxins can cause fatal damages to organs, especially for children. This may leads to stunted growth, liver damage, and liver cancer [2].
- We decide to create a low-cost Light Emitting Diodes (LEDs) spectroscopy system to let researchers from other places participate in this aflatoxin research.
- A group of researchers have built a device in the laboratory of Professor Matt Stasiewicz. We worked with John M. Hart to build and improve the reflectance spectroscopy system based on these principles for detecting the presence of aflatoxins, which can be reproduced and distributed.

Background

- Near infrared reflectance spectroscopy with a range of 550nm to 1700nm was used to evaluate the quality of grains and nuts [3]
- According to Ali Güneş's research, spectral data collected from NIR spectroscopy on a specimen, can be used to determine the presence of the toxins [4].
- Under ultraviolet light, the toxins exhibits Bright Greenish Yellow Fluorescence (BGYF) in visible light spectrum.
- The B-group Aflatoxins exhibit blue fluorescence (wavelength: 450 nm)
- The G-group exhibits yellow-green fluorescence (wavelength: 550 nm) under ultraviolet light [5].

Block Diagram

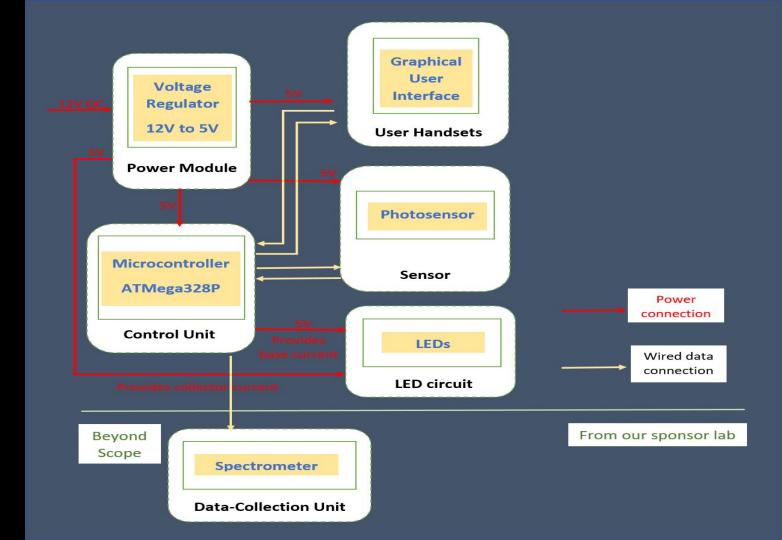


Figure 1: Block diagram

High Level Requirement

- Control the brightness of each individual groups of LED
- Voltage regulator can output 5V and provide sufficient current to the circuit
- Spectrum can be collected and displayed on computer/laptop

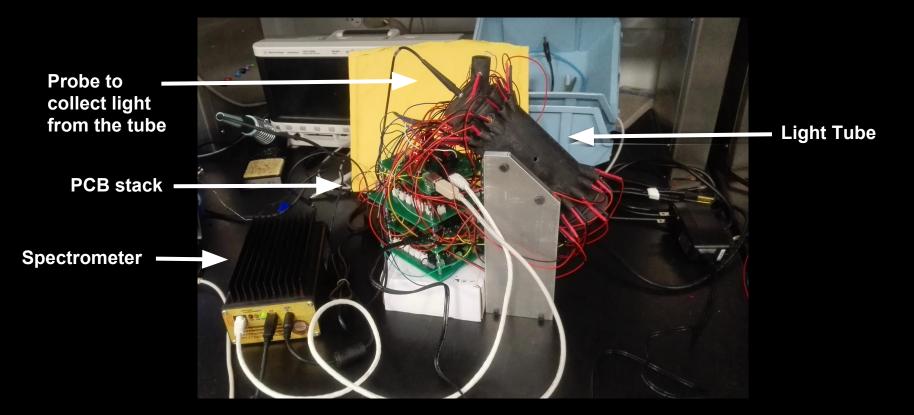
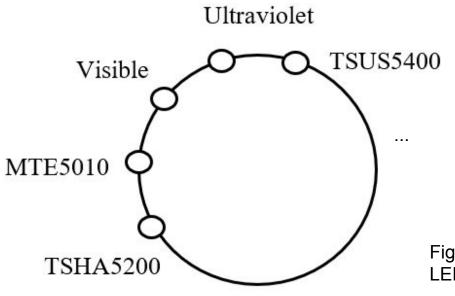



Figure 2: Set-up of the project

LED integration into tube assembly

...

Figure 3: Arrangement of LEDs around the light tube

Power Supply (12V, 5A)

Figure 4: Power plugged
into socket on lab bench

SPECIFICATION

ORDER NO).	SGA60U12-P1J		
	SAFETY MODEL NO.	SGA60U12		
	DC VOLTAGE Note.2	12V		
	RATED CURRENT	5A		
	CURRENT RANGE	0 ~ 5A		
	RATED POWER (max.)	60W		
OUTPUT	RIPPLE & NOISE (max.) Note.3	80mVp-p		
	VOLTAGE TOLERANCE Note.4	±3.0%		
	LINE REGULATION Note.5	±1.0%		
	LOAD REGULATION Note.6	±3.0%		
	SETUP, RISE, HOLD UP TIME	12ms/115VAC		

Figure 5: Specification from the power adapter datasheet

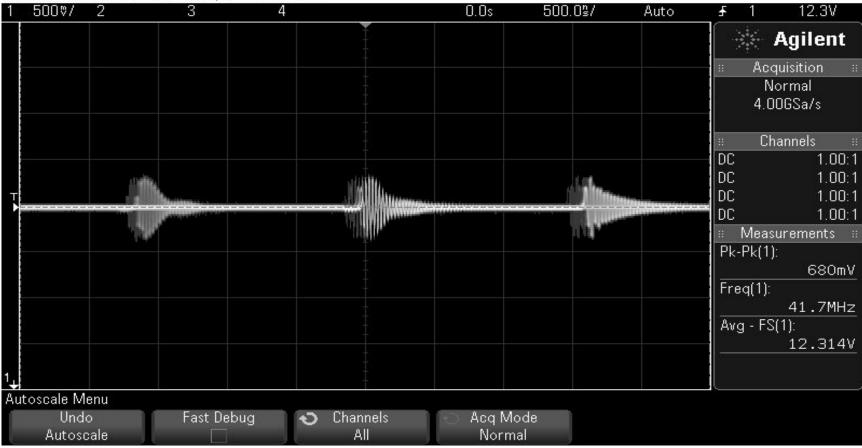



Figure 6: Power adapter connected to circuit board with a barrel connector

DS0-X 3034A, MY52103462: Tue May 01 09:14:12 2018

Figure 6: Screenshot captured from oscilloscope

Voltage regulator (LM2596-5.0)

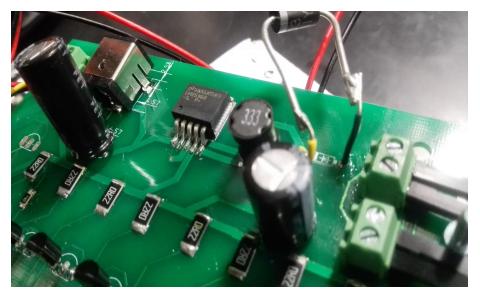


Figure 7: Voltage Regulator PCB

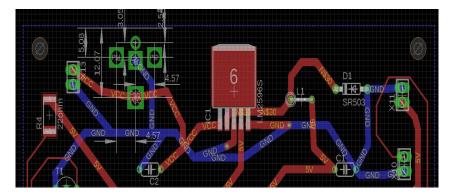


Figure 8: Voltage Regulator PCB Design

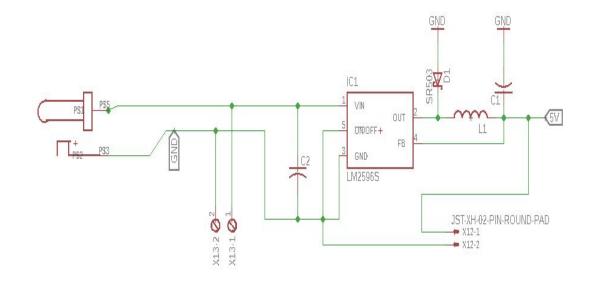
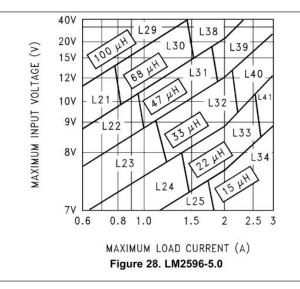



Figure 9: Voltage Regulator Schematic

 Input and output capacitor: Reduce noise

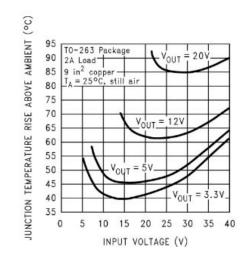
(For an aluminum electrolytic, the capacitor voltage rating must be approximately 1.5 times the maximum input voltage)[6]

- Inductor: Store energy and ensure the regulator to function well in continuous mode
- Schottky diode: prevent backflow of current

Voltage Regulator Datasheet [6]

9.2.1.2.3 Catch Diode Selection (D1)

 The catch diode current rating must be at least 1.3 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode must have a current rating equal to the maximum current limit of the LM2596. The most stressful condition for this diode is an overload or shorted output condition. See Table 4. In this example, a 5-A, 20-V, 1N5823 Schottky diode will provide the best performance, and will not be overstressed even for a shorted output.


Table 4. Diode Selection Table

		3-A D	IODES		4-A TO 6-A DIODES							
VR	SURFA	CE-MOUNT	THRO	DUGH-HOLE	SURF	ACE-MOUNT	THR	OUGH-HOLE				
	SCHOTTKY	ULTRA FAST RECOVERY	SCHOTTKY	ULTRA FAST RECOVERY	скноттку	ULTRA FAST RECOVERY	сноттку	ULTRA FAST RECOVERY				
		All of	1N5820	All of		All of	SR502	All of				
20 V 🖇	SK32	these diodes	SR302	these diodes		these diodes	1N5823	these diodes				
	are		MBR320	are		are	SB520	are				
	30WQ03	rated to at least	1N5821	rated to at least		rated to at least 50V.		rated to at least				
30 V	SK33	50V.	MBR330	50V.	50WQ03		SR503	50V.				
			31DQ03				1N5824					
			1N5822				SB530					
40 V	SK34		SR304		50WQ04		SR504					
	MBRS340		MBR340				1N5825					
	30WQ04	MURS320	31DQ04	MUR320		MURS620	SB540	MUR620				
50 V	SK35	30WF10	SR305			50WF10		HER601				
or	MBRS360		MBR350		50WQ05		SB550					
More	30WQ05		31DQ05				50SQ080					

24 Submit Documentation Feedback

Copyright © 1999-2016, Texas Instruments Incorporated

Voltage Regulator Datasheet [6]

CIRCUIT DATA FOR TEMPERATURE RISE CURVE TO-263 PACKAGE (S)

Capacitors	Surface-mount tantalum, molded D size	
Inductor	Surface-mount, Pulse Engineering, 68 µH	
Diode	Surface-mount, 5-A 40-V, Schottky	
PCB	9-square inch, single-sided, 2-oz. copper (0.0028")	

Figure 41. Junction Temperature Rise, TO-263

Requirement and Verification (Voltage Regulator 1)

DOD V 2024A MM/E21024C2 Tup May 01 00/EC 40 2010

2.00V/ 2	3	4		0.0s	10.005/	Auto?) 5 1	4.99V
			Ť					Agilent
							ii Ai	quisition
								Normal 00GSa/s
							: (hannels
							DC	1.0
							DC	1.0
			-				DC	1.0
			Ţ.				DC	1.0
								surements
							Pk-Pk(
							Eroa(1)	300
							Freq(1)	i. Low sig
							Avg - F	
							, rug i	4.974
							•	
ear Measurements								
Clear Meas 1	Clear Mea		Clear Meas 3	Clear Mea		Clear		
Pk-Pk(1)	Freq(1)		Avg - FS(1)	<none< td=""><td>></td><td>All</td><td></td><td></td></none<>	>	All		

Figure 10: Voltage Regulator 1 Output

Requirement and Verification (Voltage Regulator 2)

2.00V/	2	3	4		0.0s	10.00 % /	Auto?) 1 1	4.99V
									Agilent
								N	quisition ormal IOGSa/s
								III CH DC DC	annels 1.00: 1.00:
								DC DC	1.00: 1.00: 1.00: urements
								Pk-Pk(1) Freq(1):	
								Avg - FS	Low sign: (1): 4.9594
lear Measu	rements M	enu							
Clear M		Clear M	eas 2	Clear Meas 3	Clear Me	as 4	Clear		
Pk-Pk		Freq		Avg - FS(1)	<none< td=""><td></td><td>All</td><td></td><td></td></none<>		All		

Figure 11: Voltage Regulator 2 Output

LED Selection

TSUS5400 950nm

TSHA5200 870nm

MTE5010 1050nm

MTE3650 365nm

C513A 450nm, 600nm

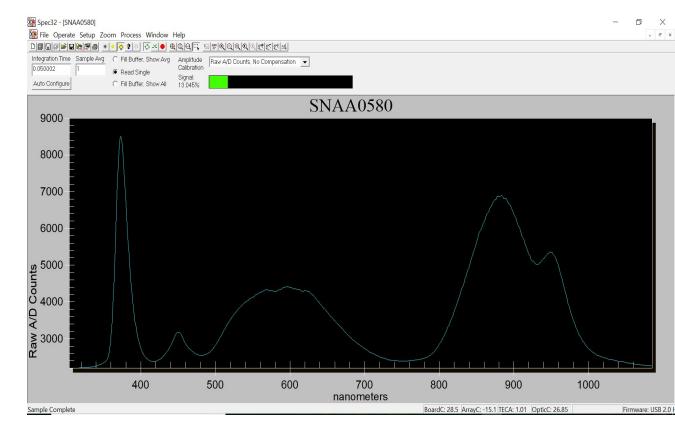


Figure 12: Spectrum of LEDs used in experiment

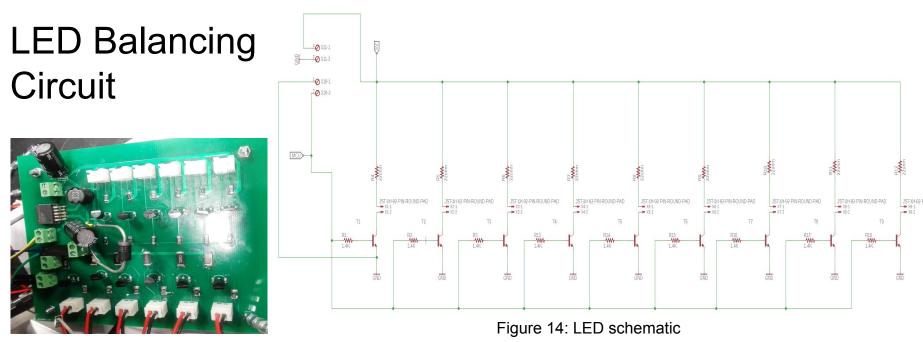


Figure 13: LED PCB

$$V_{CE} = 0.3V$$
 $V_{BE} = 0.6V-1.0V$
 $h_{FE} = 35-50$ $I_{B} \le 40mA$

$$R_c = \frac{V_{cc} - V_{led} - V_{CE}}{I_c} \qquad I_B$$

$$R_{B}= rac{V_{pin}-V_{BE}}{I_{B}}$$

 $\frac{I_c}{h_{FE}}$

Maximum Brightness

LED part number	Forward Voltage from Datasheet (V)	Actual voltage across the LED (V)
TSUS5400	1.3	1.385, 1.365, 1.394, 1.428, 1.358, 1.585
TSHA5200	1.5	1.401, 1.411, 1.387, 1.386, 1.398, 1.385
MTE5010	1.2	1.236, 1.230, 1.237, 1.228, 1.229, 1.226
MTE3650	3.5	3.352, 3.389, 3.360, 3.389, 3.344, 3.348
C513A	3.2	3.124, 3.092, 4.85, 3.036, 3.080, 3.082

LED and Sensor

MTE1077N1-R:

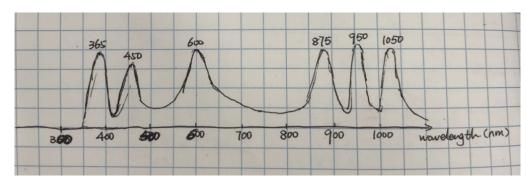


Figure 15: Wavelength of LEDs used in experiment

SD5600 honeywell sensor:

770nm visible light LED

(peak wavelength: 850, relative sensitivity at 770 nm: 0.9)

Light is detected: ~1

Light is blocked: ~1000

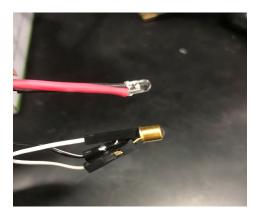


Figure 16: 770 nm LED and SD5600 sensor

💿 СОМЗ							<u>2</u>	- 🗆	Х	💿 СОМЗ							-	- 🛛	Х
									Send										Send
1017	1017	1017	1016	1017	1017	1017	1016	1017	1 ^	0	0	0	0	0	0	0	0	0	
									×										×
< 									>	<									>
Autoscroll						No line ending	✓ 9600 bauc	l 🗸 Clea	ar output	Autoscroll						No line endi	ng \sim 9600 baud	∨ Cle	ar output

Figure 17: sensor reading: When light is blocked

Figure 18: sensor reading: when light is detected

Voltage across 770 nm LEDs: 1.666V, 1.680V (forward voltage is 1.55V).

Controller (FT232RL-Atmega328P)

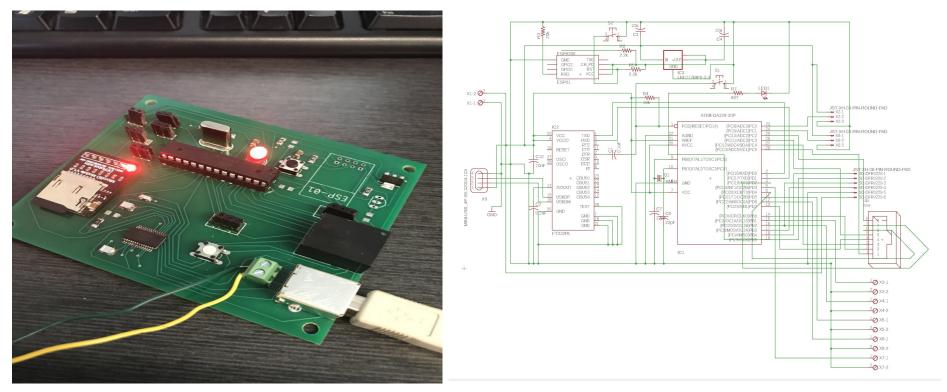


Figure 19: Controller PCB

Figure 20: Controller schematic

Flow Chart for programming

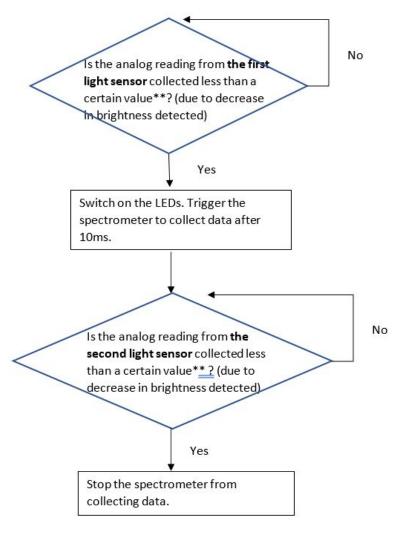


Figure 21: Flowchart to program light sensor, LEDs and spectrometer

Steps to configure the spectrometer:

- 1. Adjust the integration time to 0.005s
- Change the amplitude calibration to "Raw A/D Counts, no compensation"
- Click on 'Setup' and choose 'Trigger Mode', choose "Fast Asynchronous Clocking" and "External" (TTL input signal) for trigger control

Area Array Trigger Mode	×
Detector Clocking Mode C Synchronous Clocking (Auto M Fast Asynchronous Clocking ()	
✓ Bin All Rows (Highest Speed)	🗹 Binning 🔲 Clamp
Trigger Control C Internal (Self-triggering) C External (TTL input signal)	Buffer Control Read Single Fill Buffer, Return Average Fill Buffer, Return All

Steps to configure the spectrometer:

- 4. Collect the background brightness (with lights off)
- 5. Collect the reference brightness (with lights on)
- 6. Setup the trigger mode back to synchronous clocking and internal (self-triggering) for trigger control
- 7. Click on "Scan Continuous"

File Operate	e Setup Zoom Process Window	Help
	號閉욜 ☀ ◦ Її ♀ ⊂ ♀ ● €	ŧ∣ℚ∣∈
Integration Time 0.005002	Sample Avg Avg Read Single	Amp Calib
Auto Configure	C Fill Buffer, Show All	Sign 3.37

up Luc	SITI FIOCESS WINGOW	ncip	
15 🔹	<mark> ● ≍ ●</mark> ⊕ ≍ ● €	A A A	₽ ₩ € @ Q @ 0
ole Avg	 Fill Buffer, Scan Con Read Single Fill Buffer, Show All 	ntinuous Campration Signal: 3.374%	Raw A/D Counts,

Figure 23: Spectrometer software

PWM (pin 5, 11, 12, 15, 16, 17)

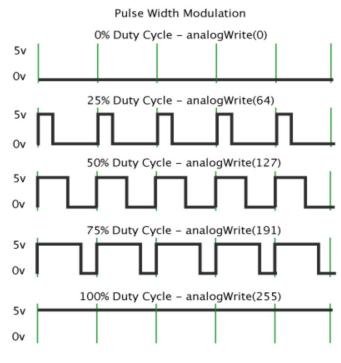


Figure 24: Pulse Width Modulation

analogWrite(led1, bri1); analogWrite(led2, bri2); analogWrite(led3, bri3); analogWrite(led4, bri4); analogWrite(led5, bri5); digitalWrite(pin3, HIGH); delay(10);

digitalWrite(pin3, LOW);

Duty Cycle: 100%, analogWrite(255)

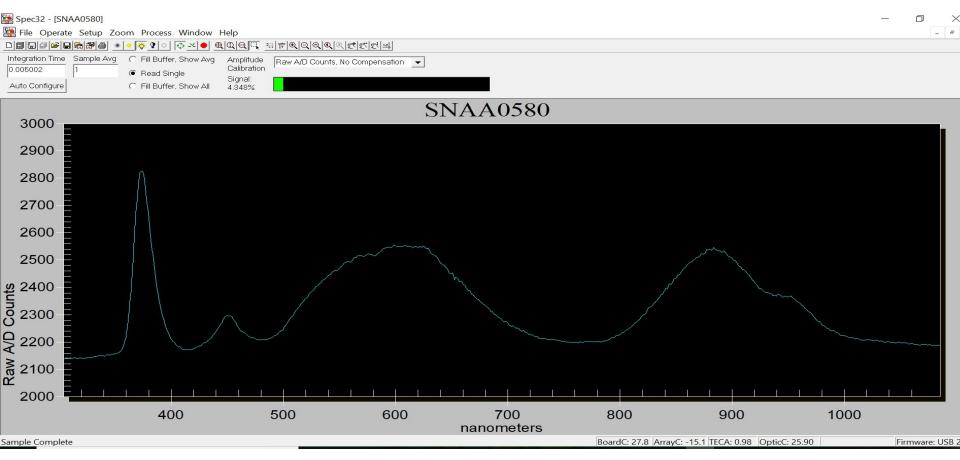


Figure 25: Spectrum at 100% duty cycle

Duty Cycle: 75%, analogWrite(191)

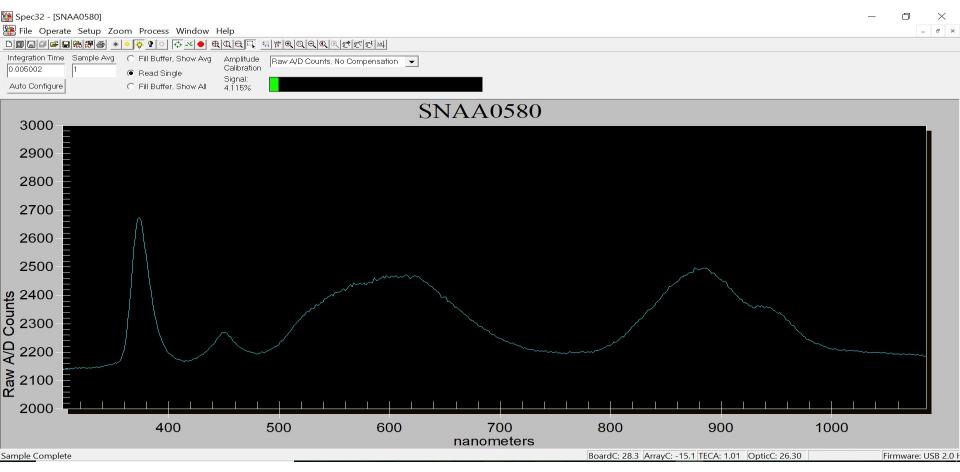


Figure 26: Spectrum at 75% duty cycle

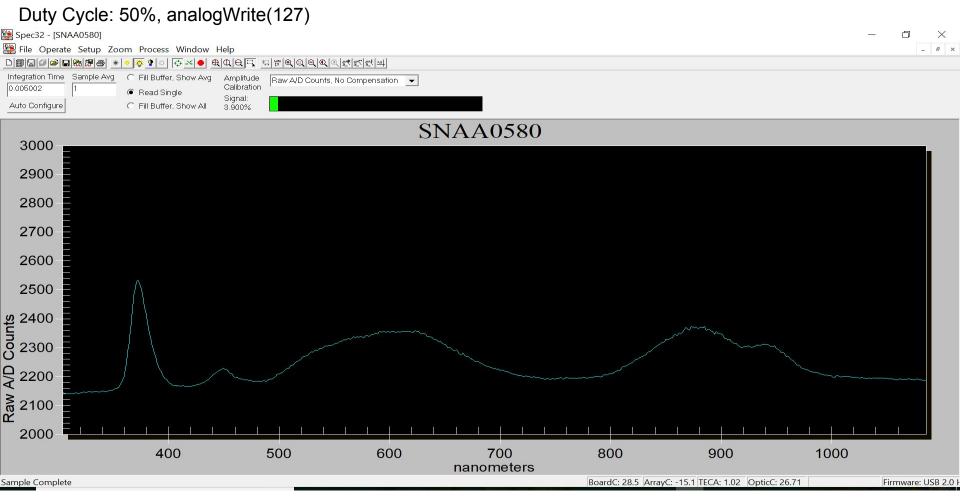


Figure 27: Spectrum at 50% duty cycle

Duty Cycle: 25%, analogWrite(64)

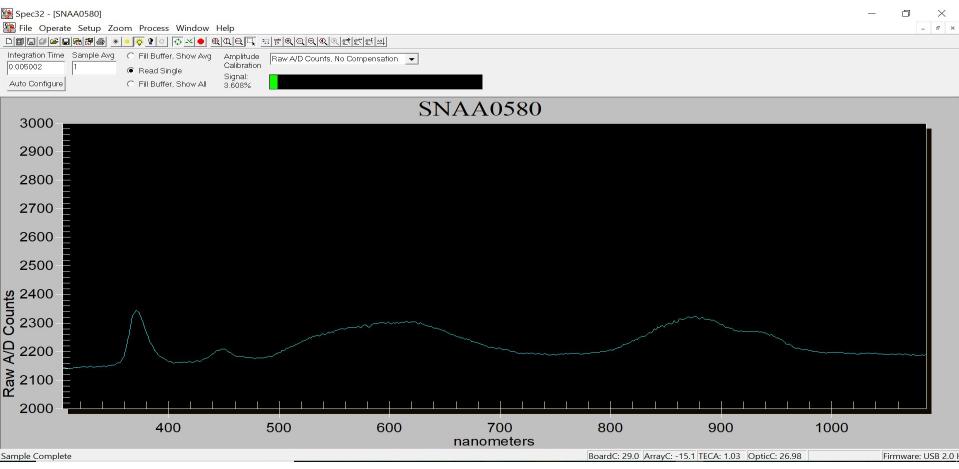


Figure 28: Spectrum at 25% duty cycle

Duty Cycle: 0%, analogWrite(0)

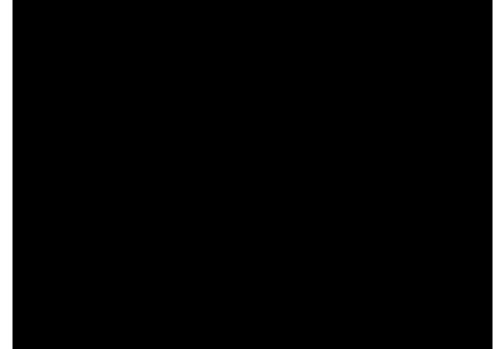

👑 Spec32 - [SNA 🖼 File - Operate	AA0580] e Setup Zoo	om Process Window	Help					-	- O ×
	🚓 🕼 🍯 🔹		100 100	ঽ @ @ <u>@</u> ¢ <u>@</u> { <u>@</u>					
Integration Time 0.005002 Auto Configure		 Fill Buffer, Show Avg Read Single Fill Buffer, Show All 		Counts, No Compensation					
3000				SN	JAA0580				
2900- 2800-									
2700									
2600									
2500									
st 2400 2300									
ರ 2300-									
2200									
≹ 2100			îŕīī			т г г т	T T T T T	анан 1	
2000 -		400	500	600	700 nanometers	800	900	1000	
Samp <mark>le C</mark> omplete	e					BoardC: 28.8 Arra	ayC: -15.1 TECA: 1.03 Optic	27.12	Firmware: USB 2.0

Figure 29: Spectrum at 0% duty cycle

Demonstration of putting the kernel into the light tube

Response on the spectrum as the kernel slides through the light tube

Conclusion and Future Work

Improvement on Hardware

- Circuit design to lessen heat dissipation
- Make the board thicker so that the trace can be wider (suitable for the amount of current)

Conclusion and Future Work

Improvement of Software

- Save data from spectrometer
- Improve on programming method (using Matlab GUI or Simulink in Matlab)

Credits

- John Hart
- Professor Stasiewicz and Eric Cheng
- TA Channing Philbrick
- And other TAs for this class

Reference

[1] National Cancer Institute. (2018). Aflatoxins. [online] Available at: https://www.cancer.gov/about-cancer/causes-prevention/risk/substances/aflatoxins [Accessed 19 Mar. 2018].

[2] "Aflatoxin Effect On Health", Fao.org, 2018. [Online]. Available: http://www.fao.org/fileadmin/user_upload/wa_workshop/ECAfrica-caadp/4._Aflatoxin_USAID.p df [Accessed: 05- Feb- 2018].

[3] T. C. Pearson, D. T. Wicklow, E. B. Maghirang, F. Xie and F. E. Dowell, "DETECTING AFLATOXIN IN SINGLE CORN KERNELS BY TRANSMITTANCE AND REFLECTANCE SPECTROSCOPY", Transactions of the ASAE, vol. 44, no. 5, 2001.

[4] "Detection of Aflatoxin Contaminated Figs Using Near-Infrared (NIR) Reflectance Spectroscopy", Research Gate, 2018. [Online]. Available: https://www.researchgate.net/publication/262684486_Detection_of_Aflatoxin_Contaminated_Fig s_Using_Near-Infrared_NIR_Reflectance_Spectroscopy [Accessed: 05- Feb- 2018].

[5] A. Wacoo, D. Wendiro, P. Vuzi and J. Hawumba, "Methods for Detection of Aflatoxins in Agricultural Food Crops", Hindawi, 2018. [Online]. Available: https://www.hindawi.com/journals/jac/2014/706291/ [Accessed: 03- Feb- 2018].

[6] Ti.com. (2018). LM2596 SIMPLE SWITCHER® Power Converter 150-kHz 3-A Step-Down Voltage Regulator. [online] Available at: http://www.ti.com/lit/ds/symlink/lm2596.pdf [Accessed 19 Feb. 2018].