

Posture Guidance chair

ECE 445 Design Document
Alex Shen, Pablo Corral Vila, and Emre Ulusoy

Team 58
TA: Kexin Hui

3/26/18

1 Introduction
1.1. Objective

According to the American Chiropractic Association, back pain is the leading cause of disability
worldwide where it is estimated that 31 million Americans experience back pain [1]. The cost to
remedy these back pain issues is reported at about $50 billion [1]. Among the many potential
causes of back pain is improper posture that causes harm to the spine and many muscle groups in
the body (depending on the pose) [2], [3]. Looking further at the displays of bad posture, it is
noted that unhealthy sitting can lead to poor body positioning for prolonged periods of time,
which adds stress to the muscles and bones [2]. It was found that people with ‘S’ shaped spines,
possibly due to excessive slouching, tend to have more back problems than people with ‘J’
shaped spines [3]. Therefore, proper posture is essential to recovery and prevention of back
problems, but this is more difficult to achieve once poor posture has been adopted [2].

Our goal is to develop a system of sensors embedded on a chair that can detect poor posture and
notify the user of the presence of poor body positioning. We will use pressure sensors on the seat
and the back as the main component of recognizing the weight distributions as well as a distance
sensor to map out the position of the user. This sensor data will be sent to a computer for
processing. We will use the data to develop a supervised learning model that will detect if the
posture of the user is good or bad. If bad, the system may notify and guide the user to a better
position through haptic feedback with vibration motors. The sensor data can also be used to
analyze trends and provide insight on how to correct past and current detected posture issues.
This addresses the problem of prolonged poor sitting posture since it notifies and educates the
user about the risks of the user’s positions.

1.2. Background

As mentioned above, bad posture is a serious problem that could lead to health issues after
prolonged use. Unfortunately, it’s possible to adopt bad posture subconsciously, which can be
effectively countered by maintaining awareness for the user of such an issue and repeatedly
correcting it [4]. As technology advances and more jobs require sitting for long periods of time,
it’s becoming more important to develop safe methods that maintain the health and well-being of
users [3]. Thus, a product that can aid in the correction of posture and isn’t as physically
intrusive as many other proposed solutions would be ideal.

When it comes to classifying whether a posture is good or bad, the distinction can be quite
difficult to make. Figure 1 shows the differences between some common postures. Notice the
difference in spinal curvature and center of mass. This difference is what we’ll be attempting to
measure with the pressure sensors measuring the weight distribution and contact, and the
distance sensor will be detecting the mid-upper spine curvature. There are many conflicting

opinions about what is the ideal sitting posture. For this project, we consider flat, long lordosis,
and short lordosis positions as generally acceptable with preference for short lordosis [7].

Figure 1: Four common sitting postures. Adapted from [7].

An illustration of some acceptable sitting angles is shown in figure 2. Note that while the back
position may be the same, the pressure distribution can be drastically different.

Figure 2: Three good working positions according to OSHA. Adapted from [6].

From our observations in [1], [2], [6], and [7], we have determined four main cases when we
consider a posture is bad:

● When the user spends too much time in the same position (lack of movement)
● When the back of the user is too far from the back of the chair (kyphosed)
● When the bottom of the user is too far from the back of the chair (slouching)
● When the user sits with more strength on one of the sides of the chair (imbalanced)

The features that make this project marketable include the many sensors embedded in a
commonly used object (chair) that can help provide data to improve the health of the user. Not
only does it remind the user to correct their posture, the data can also be processed and displayed
on the computer for the user to understand what’s going on and how they can improve their
positioning. To display the data, we will generate an illustration of the detected posture issues
e.g. heat map of pressure imbalance. This project essentially aims to combat the common issue
of bad posture with the use of a chair, which is commonly used for sitting for long periods of
time.

1.3. High-level requirements

● The sensors must be sensitive enough to detect changes in sitting positions shown in
figures 1 and 2 for adults. The microcontroller should distinguish a resolution of
approximately 2cm for the ultrasonic sensor and 100g of mass for the pressure sensors to
satisfy this sensitivity.

● The posture detection model must be able to correctly classify bad sitting posture at least
85% of the time. Correctness of posture is defined as a slight lordosis of the lumbar and
flat or slightly kyphosed thoraco-lumbar angle [7]. OSHA recommended positions in
figure 2 must also be considered [6].

● The chair must be power-efficient, ideally able to last at least 10 hours without changing
batteries. For ~2500 mAh batteries, this corresponds to approximately no more than 250
mA of current being drawn by the entire system.

2 Design
Figure 3 shows the block diagram of the system. The battery supplies power to the voltage
regulators to distribute the appropriate voltages to the rest of the modules. The sensors provide
data to the microcontroller that will be sent over Bluetooth to a computer for processing. The
data collected by the computer will also be used to display trends and provide recommendations
on the user’s posture along with the haptic feedback guidance from the vibration motors. These
modules will satisfy the high-level requirements because the minimum amount of sensors and
power is used to allow the system to work without draining too much power. The voltage
regulator is more efficient than a voltage divider in that regard because current is drawn
separately for the regulator than it is for the load. Also, the multiple sensors feeding information
to the microcontroller attempt to provide enough data for higher classification rates and granular
data with the help of the analog multiplexer.

Figure 3: Block diagram

Figure 4 shows the rough physical layout of the system. The pressure sensors on the seat attempt
to record pressure changes in the areas near the knee and under the thigh, ischial tuberosities,
lumbar, and shoulders. These sensor placements were found to be the most important and
distinguishable areas for detecting different postures [8]. The distance sensor is mounted on the
back, where it will sense the presence of a user and also detect the distance from the user’s spine.
The distance detected from the user’s spine will help determine if the user is slouching along
with the sensors near the knee. A single distance sensor is used because the user is expected to sit
directly in front of the sensor. Even if the user is not sitting directly in front of the sensor, the
pressure sensors will be able to conclude that based on the weight distribution. The rest of the
components will be mounted behind the chair to avoid physical damage. Note that the actual
number and placement of sensors will be determined through trial-and-error, but the targeted
areas of the body to sense will be the same.

Figure 4: Physical design sketch

To work properly, the chair system will need six modules: power supply, sensors, control
system, data stream, user interface and software.

2.1. Power supply

The power supply module is responsible for providing the power used by the other
modules/components. The main voltages used are 3.3V and 5V. Adding up the power
consumption from all the components below, we obtain the following table:

Module/Component Approximate Power Usage (mW)

Voltage Regulators 240

Pressure Sensors 18.4

Distance Sensor 75

Microcontroller 26

Bluetooth 26.4

Vibration Motors 240

 Table 1: Power Usage by Module/Component

Therefore, the approximate maximum power consumption is ~625.8 mW.

2.1.1. Battery

The battery is the source of the power in the power supply module. We will not be designing it
because the off-the-shelf product is sufficient for this project’s needs. The total voltage must be
above the required 5V for most components. Therefore, the simplest option appears to be 4
Energizer E91 alkaline AA batteries in series. Each battery contains up to 1.5V, so this provides
1.5V*4 = 6V and the batteries have a capacity of approximately 2500mAh at a discharge current
of 100mA [17]. Using Eq. 6, we find the current from the 6V batteries required to satisfy the 686
mW power consumption of the system is ~104.3 mA. Therefore, the total time between complete
discharges is slightly less than 2500 mAh / 104.3mA = ~24 hours, assuming a constant current
and linear discharge. This is sufficient for our power usage high-level requirement, and can be
used for several standard work days before requiring a change of batteries. Keep in mind that this
power consumption calculation is more of a worst-case estimate since it assumes the vibration
motors will always be on and drawing 80 ~ 120 mW of power and that the voltage regulators are
drawing 120 mW each (which is not as efficient as off-the-shelf solutions).

No requirements and verification are needed since we will not be designing any aspects of this
component.

2.1.2. Voltage regulators

The voltage regulators have the duty of maintaining the desired voltages from the battery to the
3.3V and 5V values. The components that will be using 3.3V are the Bluetooth module and the
vibration motors. The 5V components are the microcontroller, analog multiplexer, pressure
sensors, and distance sensor will be using 5V.

To add complexity, we decided to make our own voltage regulators. We will need a total of two
regulators since we need one to produce ~3.3V and the other to produce ~5V. The design
includes a BJT NPN transistor and a Zener diode. It takes advantage of the Zener diode
properties, which includes the fact that its voltage is approximately constant when it is in
breakdown mode.

Figure 5: 3.3V (left) and 5V (right) voltage regulator schematics.

To calculate the components, we used the fact that the NPN diode MPSU06, by Motorola, has a
emitter-base voltage of 0.6V [19]. Thus, knowing that and the output voltage, we can easily
calculate the Zener diode voltage (5.6V for the 5V regulator and 3.9V for the 3.3V regulator). To
calculate the resistor value, we first calculated the voltage across it, which is the amount of
voltage to dissipate until it reaches the Zener diode breakdown voltage. Then, we followed the
formula:

Rv = V Rmin

I +Dmin
ILmax
h +1F E

Eq. 1

Where IDmin is the minimum current in the Zener diode, which was taken from their datasheets:
20 mA for 1N5228 and 1N5232 [18]. ILmax is the maximum load current, which was taken from
making calculations of the elements that are going to be supplied by each linear regulator. We
concluded that the 5V regulator, which powers the sensors, the microcontroller, and the analog
multiplexer, has a load current of approximately 119.4 mA, and the 3.3V regulator, which
powers the Bluetooth module and vibration motors, has a maximum current of ~128 mA. Refer
to section 2.4.1 Bluetooth to understand the disparity in power consumption and maximum
current of the 3.3V load. Moreover, we know that the parameter hfe, which relates the currents
through base and collector, is 60 for this transistor [19]. With equation 1, we are able to calculate
an approximate Rv, which is ~18 Ω for the 5V regulator and ~100 Ω for the 3.3V regulator.

Since the voltage needs to be reduced from the 6V batteries, this results in some power
dissipated in the voltage regulators. This current is roughly 20 mA using 6V each. Therefore, 240
mW of power will be used up to regulate the voltages of 5V and 3.3V from the 6V source. While
it’s possible to use a true minimum current through the zener diodes (somewhere around 1mA),
the recommended/best practice is to use the test voltage.

We did some simulations for voltage regulators using Simscape (a Matlab extension). We
entered the next parameters: a Zener resistance of 0.1ohm for the Zener diodes, input voltages of
5.5-6V (to see what happens if it varies) and we modeled the load as resistances. Knowing the
output voltage and current, we used Ohm’s law to get the resistance values (80 Ω for the 3.3V
regulator and 60 Ω for the 5V regulator).

The results were good: a voltage of ~3.2V on the 3.3V regulator, and a voltage of ~4.8V on 5V
one. These values are within the tolerance margin. The results are shown for the 5.5V and 6V
inputs for the 5V regulator and similar results on the 3.3V regulator in figures 6 through 8.

Figure 6: Output of the 5V voltage regulator given 5.50V input

Figure 7: Output of the 5V regulator given a 6.00V input

Figure 8: Output of the 3.3V voltage regulator given a 6V input

Requirement Verification Points

1. The 3.3V voltage
regulator must
consistently output
voltages between
3.0V - 3.6V given an
input of 5.5-6V.

2. The 5V voltage
regulator must
consistently output
voltages between
4.5V - 5.5V.

3. The temperature must
not exceed 125℃
while supplying
power to avoid injury,
destruction, and
quicker depletion of
the batteries. High
temperatures will also
affect the current
output since VBE and
VZ decrease as
temperature increases
[18], [19]

1.
A. Provide a 5.5-6V input signal into the

3.3V regulator
B. Check output voltage to make sure it’s

within the desired range of 3.0-3.6V
2.

A. Provide a ~6V input signal to the 5V
regulator

B. Check the output voltage to ensure it’s
within the range of 5V+/-0.5V

3.
A. During full operation of the system,

measure the maximum temperature using
a temperature sensor.

B. Also measure the current to ensure

1. 1
2. 1
3. 1

Table 2: Voltage Regulators RV Table

2.2. Sensors

2.2.1. Pressure Sensors

We will use 8 pressure sensors to detect the critical areas of distinguishing postures as illustrated
in figure 4. The pressure sensors we will be using are SEN-09376 Force Sensitive Resistors
(FSR). These 1.75”x1.75” FSRs are flexible and can support applied force in the range of 100g
to 10kg [11]. Load cells are an alternative to FSRs, and they can provide more accurate and
sensitive readings. However, load cells are more difficult to work with since many other
components are needed to amplify and detect the signal changes. There are also issues with
placing them physically on the chair since the center tab needs elevation to allow displacement
and the metal bracket will not be comfortable to sit on. The FSR we will be using is convenient
in that the thinness and flexibility allow more comfort without being drastically more expensive.
The primary concern is that there exists a possibility that the supported force range is not
sufficient. We will now perform an analysis on the feasibility of the 0.1-10 kg range.

Considering a 100 kg user and the average sitting area of adults is 179.4 in2 [10]. To figure out
the pressure, we first need to obtain the force. Force is the product of mass and acceleration as
shown in Eq. 2 below.

 F = m * a Eq. 2

Using Eq. 2 with m = 100 kg and the acceleration due to gravity a = 9.8 m/s2, the force of the
user is calculated as 980 N. Pressure is defined as force per area as shown in Eq. 3.

ressureP = F
Area Eq. 3

Thus, applying the user’s force F = 980 N and the sitting area = 179.4 in2 = 0.1157 m2, we get the
resulting pressure of 8470 Pa. Using the conversion rate of 1 Pa = 0.000145 psi, the conversion
to psi is now 1.228 psi. Now multiplying the pressure with the SEN-09376 area of 1.75”x1.75”,
we obtain the number of pounds per sensor as 3.76 lbs. Converting this to kilograms yields a
result of 1.706 kg per sensor. Therefore, an even distribution of force of a 100 kg user on the
average sitting area is well within the range of the SEN-09376 Force Sensitive Resistor.

The power consumed by the FSR is easy to calculate. We first consider the relationship of
resistance and force. As seen in figure 9, the relationship is linear since both scales are
logarithmic. Based off of the calculations above, the FSR should be set to approximately 1 kΩ
and will be put in series with a 10 kΩ resistor as recommended in [11]. The equation for power
in terms of voltage and resistance is shown below.

P = R
V 2

Eq. 4

Therefore, applying V = 5V and R = 11 kΩ, the average power consumption for each sensor is
~2.3 mW. The average total power for 8 sensors is 8*2.3= ~18.4 mW.

Figure 9: Resistance vs. Force for a Force Sensitive Resistor. Adapted from [11].

As seen in figure 10 below, we will take advantage of the fact that the force sensitive resistor
varies in resistance. A constant 5V voltage input with a constant 10 kΩ resistor in series in a
resistor divider circuit will allow changes in vout to be directly attributed to the change in
resistance of the FSR. This output voltage will used as input to the next component: the analog
multiplexer.

Figure 10: Force sensitive resistor schematic

Requirement Verification Points

1. When no pressure is
applied, the voltage
reading should be
approximately 0 and
the current should be
less than 0.05 mA.

2. A neutral balanced
sitting position with
two sensors on both
sides of the body
should output voltages
within 0.1V.

3. Varying the weight on
each sensor from ~50g
to ~1kg should result
in a change in
resistance from
~10kΩ to ~1kΩ

4. Sensor readings
should be consistent
within around 0.5V
for a user who is
sitting still in any
position.

1.
A. Use a DC generator to supply 5V as the

input voltage.
B. Measure the voltage and current between

the resistor and the FSR using a voltmeter
and ammeter. The result should be less
than 0.05 mA current and about 0 V.

2.
A. Place two sensors directly under the ischial

tuberosity of the subject.
B. Use a leveler to ensure the user is level and

balanced.
C. Measure the voltages to make sure the

difference is within 0.1V.
3.

A. Obtain a set of weights from 50g to 1kg
B. Place the 50g weight on the pressure

sensor and obtain the output.
C. Next, add weights until ~1kg is reached.
D. Measure and calculate the resistance using

a multimeter and the obtained values
should be around 10kΩ and 1kΩ.

4.
A. Sit on a pressure sensor.
B. Take an initial reading with a voltmeter

and have the user continue to remain in the
initial pose.

C. Continue to take measurements every 20
seconds for 10 minutes, and check to make
sure all values are close (within ~0.5V).

1. 0
2. 2
3. 0
4. 0

Table 3: Pressure Sensors RV Table

2.2.2. Distance sensor

Along with the measurements of pressure distribution around the seat and back, we will also
want to know the distance between the back of the user and the back of the chair. This
information will be useful in distinguishing the postures shown in figure 1. In particular, it helps
detect the slump posture from the other acceptable ones. To do this, we will use an HC-SR04

Ultrasonic Sensor. This sensor emits 8 cycle bursts of 40kHz ultrasonic waves in response to a
10 microsecond trigger and outputs a high signal for the duration that it took to receive the
reflected ultrasound [12]. As seen in figure 11, the distance sensor has four pins: two of them are
the supply pins (supply voltage and ground) and the other ones are the trigger and echo. The
trigger essentially toggles the output of ultrasonic waves, and echo outputs a high signal for the
round trip duration that it took to receive the ultrasonic waves.

Figure 11: HC-SR04 pin diagram.

Since the waves travel at the speed of sound and they make a round trip, the distance can be
measured using the equation below where 340 m/s is the speed of sound:

istance 40D = 3 * 2
time Eq. 5

Using the above numbers, we can calculate the time it takes to take a reading. Given how we
don’t expect to see distances over 30cm, we can calculate the maximum round trip time for the
sound to propagate as 2*0.3/340 = 1.765 ms. Since 8 cycles of a 40kHz are emitted, the latency
of that is 8 cycles/40,000 cycles/second = 200 microseconds. So adding the latencies together,
the maximum latency expected for this sensor in this project is 10 microseconds + 200
microseconds + 1.765ms ≅ 2 ms

The ultrasonic sensor was chosen over alternatives such as infrared because of the ease of use,
robustness in lighting conditions, and low cost. The ultrasonic sensor requires 5V as input and
operates on 15mA of current [12]. So the power can be calculated using Eq. 6.

V P = I Eq. 6

With V=5V and I = 15mA, the average power usage of the ultrasonic sensor is 75 mW.

Requirement Verification Points

1. Obtain distance
values of between
2-30 cm that are
accurate within 2 cm

2. Detect severe slump
postures of around
45-60 degrees
measured from the
seat of the chair from
distances 10-30 cm
away when mounted
on the chair.

3. The plot of time vs
slump angle should be
linearly proportional
(the readings should
not register
out-of-range objects
while slumping).

4. The latency of
operation should be
no more than
2ms+/-0.2ms

1.
A. Hook the sensor up to a microcontroller such

as an Arduino and place it at the base of a
meter stick.

B. Use a large textbook and measure values
starting at 2 cm away up to 30 cm away.

C. Every measurement should be accurate
within 2 cm.

2.
A. Mount the ultrasonic sensor on the top of the

back of a chair.
B. Have the user sit on the chair and measure an

angle within 45-60 of the back using a
protractor, and have the user sit 10-30 cm
away.

C. Measure the output value of the ultrasonic
sensor from the microcontroller and ensure
the values correspond to the selected distance
values.

3.
A. Using the same setup from requirement 2,

the user starts at a neutral 90 degree upright
position.

B. Record data as the user slowly slumps over
until 45 degrees is reached.

C. Plot the data and determine a linear
relationship between the distance and slump
angle.

4.
A. Position the ultrasonic sensor at the base of a

meter stick facing a textbook 30 cm away.
B. In the microcontroller code, insert timer

statements to capture the time directly before
the trigger and directly after receiving the
echo.

C. Run the code and make sure the latency is
less than 2ms+/-0.2ms

D. Repeat from step A 100 times for
consistency.

1. 0
2. 3
3. 0
4. 0

Table 4: Distance Sensor RV Table

2.3. Control system

The control system takes the sensor data as input and presents it in a format to send the data to
the Bluetooth Module in the data stream module. It will then also accept a response from the data
stream to determine actions to output to the vibration motors in the user interface module.

2.3.1. Microcontroller

This is a key part of the project. Think of it like the spinal cord: it connects the information from
the brain (software) to the sensors and actuators (sensors, vibration motors, etc.). The
microcontroller will take the inputs, which are:

● 1 analog input from 8 pressure sensors pressure sensors
● 1 digital input from the distance sensor
● 2-byte Bluetooth input from the computer through the data stream

The outputs will be:

● 10-bit data for each sensor reading to the computer through Bluetooth
● 6 PWM voltages between 2.3-3.3V each to a vibration motor circuit
● 3 digital outputs to select the next pressure sensor to read from the analog mux

To accomplish the above specifications, an ATmega328P with 16Mhz frequency, 32KB flash
memory, 2KB SRAM, 10-bit ADC, and 23 programmable I/O pins will be used [13]. The pins of
interest are the analog inputs for the pressure sensors, digital input and output for the ultrasonic
sensor, PWM pins to control the vibration motors, RX and TX pins for Bluetooth, and digital
output pins for the analog multiplexer selection. It should be noted that the maximum current that
a pin can output is 40 mA, so special can needs to be taken when powering the power-intensive
vibration motors [13]. This microcontroller was selected over alternatives due to the popularity,
resulting in abundant documentation, as well as familiarity and ease of programmability since it
is used in an Arduino Uno.

The microcontroller mainly behaves as the central link between components and an interface
between hardware and software. Not only should it be able to poll all the pressure sensors from
the analog mux using digital output, but it also has to receive ultrasonic sensor readings, send
and receive data through Bluetooth, and power the vibration motors. Since the microcontroller
has a single core and no multithreading capabilities, these tasks must be quick and/or
non-blocking. Figure 12 shows what the control flow of the microcontroller will look like. It will
continuously poll data from the sensors and the Bluetooth module to decide what to do. Note that
the data can be sent directly after reading it or altogether after all sensors have been read since
the microcontroller is synchronous. Generally, being able to go through all the inputs and outputs
of the microcontroller in several milliseconds is sufficient for the purpose of the project. Notice

in figure 12 that it’s possible to not receive Bluetooth data in the current pass due to a slower
data processing speed, so it will just check again in the next loop because the single-threaded
nature of the microcontroller cannot afford to block the control flow just to receive data that may
not arrive for a relatively long time.

Figure 12: Microcontroller flowchart.

A primary source of concern is the heavy use of one 10-bit ADC within the microcontroller for
all 8 of the pressure sensors. The 10-bit ADC takes, on average, 13 clock cycles to perform a
conversion and uses a recommended 50kHz to 200kHz input clock frequency [13]. Assuming the
input clock frequency is 125kHz, then 13 cycles / 125000 cycles/second = 104 microseconds per

conversion. 8 pressure sensors will result in a total conversion latency of 832 microseconds. This
value is still under 1 ms, so it is incredibly fast to any user and not a big source of concern.

The typical current for a 5V input at 8MHz is 5.2mA [13]. So the power consumption of an
active microcontroller is approximately 26 mW but this will vary significantly depending on
usage.

Requirement Verification Points

1. Can provide a linear
2.3-3.3V signal using
the PWM output pins
while processing
input signals and
output less than 40
mA.

2. Use the 10 least
significant bits of a
received Bluetooth
message as a
mapping onto the
2.3V-3.3V range with
a granularity of
1.0mV+/-0.2mV.

3. Send appropriate
signals to the
corresponding
vibration motor if bad
posture is detected in
that region (extract
one-hot coded
vibration motor
positions from the
most significant bit of
the received 2-byte
computer data)

4. Loop through the
sensor, Bluetooth,
and vibration motor
operations in less
than 20 ms.

1.
A. Write code to cycle through the motors in order

using the one-hot encoded top 6 bits.
B. Measure the output voltage and current of the

PWM pin at different increments with a
multimeter.

C. Each step should result in a difference of about 1
mV with the lowest to highest values ranging
from 2.3V to 3.3V.

2.
A. Collect input data from sensors
B. While the data is being collected, program the

vibration motor to periodically take in a 2.3-3.3V
PWM signal.

C. Monitor the inputs to ensure the data has not been
corrupted, and make sure the vibration is
perceived as continuous as it passes through
loops.

3.
A. Apply heavy imbalance on the vibration motor

designated as 000001.
B. Check the received message for 000001 as the 6

most significant bits.
C. Physically check that the motor intensity

corresponds to the intensity designated in the
remaining 10 bits.

4.
A. Write code to check timestamps at the beginning

and end of each loop.
B. Run through the loop 100 and record the

timestamps for each loop.
C. Verify that the latency of each loop is within

20ms under different sensor inputs (different
poses).

1. 0
2. 2
3. 2
4. 1

Table 5: Microcontroller RV Table

2.3.2. Analog Multiplexer

Due to a high number of pressure sensors needed, an analog multiplexer will be used to select the
input to process by the 10-bit ADC. This component takes the analog outputs of the pressure
sensors as input, then the microcontroller selects one of the sensors to read.

While an alternative is to use a microcontroller with more pins, using the analog multiplexer
makes it easier to scale the number of sensors. Also, it’s much easier and cheaper to obtain an
analog mux than it is to find the appropriate microcontroller. If the need for 16 pressure sensors
arises, the current 8-bit multiplexer can be replaced with a 16-bit multiplexer at the cost of an
extra digital output pin (4 total to select each input). The number of sensors that can be read
scales as O(2n) where n is the number of select bits/pins. However, keep in mind that the
single-threaded microcontroller will require more time to poll a large pool of sensors.

The 74HC4051 will be used as the analog mux. This multiplexer has 8 analog inputs and also
uses three bits to select one of the 8 inputs with a typical time of 15ns [14]. It takes in 5V from
the supply and also has a current usage of about 2 micro-amps. Therefore, the power usage is
negligible.

Requirement Verification Points

1. Power dissipation per
input must be less
than 100 mW.

2. Correct selection of
inputs given
corresponding
selection signals

1.
A. Apply the pressure sensor inputs into the

mux.
B. Measure the product of current and

voltage with a multimeter to determine if
the power dissipation is under 100 mW.

2.
A. For each input of the mux starting from

input 0, apply an input as the input
number multiplied by 0.625V. (0V in
input 0, 0.625V in input 1, 1.25 in input
2, etc.).

B. Input each combination of the 3 select
signals (000, 001, 010, etc.).

C. For each selection, check that the output
is the correct voltage value.

1. 1
2. 0

Table 6: Analog Multiplexer RV Table

2.4. Data stream

The Data Stream module is how the microcontroller will be communicating with the computer.
The microcontroller will be sending the 10-bit converted sensor data for each sensor. Then, the
computer will read it, process it, and it will return a course of action to the microcontroller (no op
vs. activate vibration motor x with intensity y).

2.4.1. Bluetooth

We will be using a Bluetooth connection to transmit data from the chair to the computer to be
processed. The Bluetooth module will also be receiving commands from the computer to vibrate
as one form of notifying the user. The Bluetooth stack we chose is an embedded system
approach, because we are implementing a Bluetooth peripheral device. The Bluetooth module we
have picked out is the HC-05. It is a simple TX/RX pipeline, and uses 3.3V with a 3.3V regulator
on board so we can test it with an Arduino or a similar 5V board [15].

The amount of current used by the HC-05 varies wildly, depending on the state. Initially, the
module will be in pairing mode to attempt to establish a channel of communication with a nearby
device. This pairing mode consumes at most 40 mA with an average of 25 mA [15]. After
successfully pairing, it will begin communicating, so the usage drops to a stable 8 mA
steady-state current [15]. Therefore, the worse case pairing power consumption is 3.3*40 = 132
mW which drops to 26.4 mW after pairing with a device. However, we must consider the fact
that if the Bluetooth hasn’t been paired, some components will not be able to function. Namely,
the vibration motors will not be enabled. Peering ahead, we notice that the vibration motors have
a steady-state power consumption of 240 mW with an average 3.0V input, which is significantly
higher than the pairing power consumption. Also, the system is not expected to be in pairing
mode for long periods of time since the system/chair is not expected to move out of range or pair
with something else, so it will only be drawing 8 mA of current for the vast majority of the time.
Therefore, the average power consumption will be considered ~26.4 mW.

The range is up to approximately 30 feet. The HC-05 also has a 2.4GHz frequency and 9600bps
default transmission rate configurable up to 1,382,400 baud rate [15]. The module is expected to
have a 100% accuracy unless the chair drifts too far from the computer (over 30 feet away).

To compute the transmission rate needed, we use the approximately 3 ms latency it takes to
collect the sensor data where each sensor reading is sent as 10 bits. Therefore, The minimum
transmission rate for a 3 ms loop period is 90/0.003 = 30,000 bps. As we can see, this required
rate is over 3 times higher than the default rate. So to improve the Bluetooth transmission
efficiency, the default baud rate can be used while limiting the sensor data collection to 10 ms
per loop or, better yet, use a baud rate over 30,000 bps.

Requirement Verification Points

1. Must be capable of
transmitting 90 bits
every loop through the
sensors where the
loop time can be
estimated as low as 3
ms.

2. Must be capable of
pairing and
maintaining a stable
connection of sending
and receiving data
from a computer 6
feet away.

3. Must be able to
transmit data with
approximately 0%
error.

1.
A. Create a program that sends 90 bits of

data through Bluetooth to a computer
and record a timestamp.

B. Create a timestamp on the receiving
computer for each datum received.

C. Compare the latency by finding the
difference in timestamps.

D. Repeat step A with a 1.3M baud rate
and also with a 4800 baud rate.

E. The bandwidth is congested if the
transmission time is significantly
slower (up to 0.5 seconds slower for
heavy traffic).

2.
A. Use a tape measure to position the

Bluetooth module 6 feet from the
computer.

B. Send 10-bit sensor data to the
computer.

C. Check that the data was received on
the computer and send an
acknowledgement to activate a
vibration motor.

D. Use a multimeter around the output
pin check that a signal is created in
response to the received message.

3.
A. Randomly generate 1000 10-bit

values from the microcontroller.
B. Transmit the 1000 value sequentially

to the computer through the Bluetooth
module.

C. The computer will then transmit the
data back after receiving it.

D. When the microcontroller receives
data, compare it to the expected value.

E. This requirement is satisfied when
only 1000 values are received and
correct.

1. 2
2. 0
3. 0

Table 7: Bluetooth RV Table

2.5. User interface

The user interface is how the system communicates with the user. The communication media can
be through the vibration motors when bad posture is detected or through the visualization and
recommendation program from the software. We will attempt to highlight areas that are at risk of
injury due to poor posture. This data will be specific to the user since it learns the posture trends
of the user. The user interface may eventually be implemented through a website, but this may be
replaced with a program that creates a GUI locally. That is where all the necessary calculations
can take place and it’s easy to access and communicate with the user.

2.5.1. Vibration motors

We will use 6 C1034B018F vibration motors mounted in various regions near their
corresponding pressure sensors. These vibration motors operate on 2.7~3.3V with a starting
voltage of 2.3V, which scales linearly with intensity [16]. They will be toggled individually by
the microcontroller, occupying all 6 of the available PWM pins. We elected to occupy all the
PWM pins because the motors have a maximum steady-state current draw of ~80 mA, which is
about double the ~40 mA maximum current output of a digital pin of the ATmega328p [16],
[13]. Each motor has a rated speed, current, voltage, and noise of ~9000 rpm, ~80mA, 3.0V, and
~50dB, respectively [16]. These values show that a lot of power is used to generate mechanical
movement that translates to a noticeable sound, which is ideal for the purpose of notifying the
user. The power usage at the rated settings is approximately 240 mW.

Since the vibration motors are DC motors with an inductor element inside, we must be cautious
about the properties associated with that. In particular, we should that inductors produce back
EMF in response to a change in current. Consider equation 7 below where L is the inductance,
dI/dt is the change in current across the inductor with respect to time, and V is the voltage across
the inductor:

V = L dt
dI Eq. 7

When a motor is at steady-state, the change in current is small or 0 so the voltage is essentially 0.
When the power is switched off, the change in current becomes negative. This will result in a
negative voltage which means the inductor is now supplying current proportional to the change
in current from the source. This can result in catastrophic voltage levels that may damage
components in different parts of the circuit. To remedy this issue, we place the vibration motors
in a circuit shown in figure 13 below. The parallel reverse-biased (also known as a “flyback”)
diode is used to absorb all of the back emf from the motor when the motor is turning off. The

NPN transistor allows the microcontroller to supply a low current digital output that will connect
the motor to ground and turn it on.

Figure 13: Vibration motor circuit. Adapted from [24].

While we have been able to devise a solution for the back emf with figure 10, there’s another
problem with DC motors: inrush current. This issue is another consequence of inductors and
motors in general where a motor at rest will require a large amount of current because of several
properties mentioned above related to equation 7. Basically, the inrush current will be very high
but will eventually stabilize. There are solutions to combat this such as current limiters and large
capacitors. However, for the sake of simplicity, we will be using the method of ramping up the
effective voltage through PWM. With PWM, we can slowly raise the voltage during the inrush
current phase until steady state so that the inrush current will not be dangerously high. Starting
the PWM ramp from ~2.3V will result in a manageable ~120 mA current draw [16]. Therefore,
the startup current power consumption of approximately 276 mW. This power consumption is
close to the steady-state value of ~240 mW, so we will say that the average usage is
approximately ~240 mW.

Requirement Verification Points

1. Must be noticeable
under a thin cushion
when operating on
3.0V+/-0.3V.

2. The current draw of
the motor must not
exceed 120 mA when
applying a ramped
PWM signal.

3. Must be spaced at
least 2-3 inches away
from the nearest
pressure sensor to
avoid interference.

1.
A. Connect the vibration motor to a 3.3V

source as in figure 10 above.
B. Place the device under a cushion and

determine if the vibrations can be felt.
2.

A. Configure the circuit in figure 10.
B. Starting with a ~2.3V PWM signal,

slowly increase the voltage to ~3.0V.
C. Measure current with an ammeter

throughout and make sure the current
never exceeds 120 mA.

3.
A. Obtain a ruler and mark 2-3 inch radiuses

around each pressure sensor.
B. No motors should be inside the marked

areas.
C. Move the remaining motors near their

designated locations that do not intersect
the off-bounds territory.

1. 2
2. 1
3. 1

Table 8: Vibration Motors RV Table

2.5.2. Posture Analysis GUI (software)

The posture analysis is a form of digital feedback for the user to view. This will include a graph
of posture trends and movement to track progress. It will also notify the user about reasons the
vibration motors were triggered e.g. too much weight was shifted onto the right thigh. Similar to
the applications that log activity details, this is designed to allow the user to gain a better
understanding of the ubiquity of posture issues and what to do to mitigate those issues. As an
additional feature that will be discussed in greater detail in the tolerance analysis section, there
will also be a “calibration” button on the GUI for the user to toggle. This button will allow the
user to customize the interpretation of sensor readings to conform to a more ideal posture. This
can be thought of as a feedback loop in software.

Requirement Verification Points

1. Can display messages
and pressure maps on
the user’s computer
within 100 ms of the
readings being
detected.

2. Runs on a separate
thread from the main
data processing thread
and utilizes
approximately 0% CPU
when no change is
detected from the
previous readings.

3. Can communicate with
the data processing
program/process/thread
to provide user
interactions (calibration
button, viewing
different timescales,
etc.) with little latency
(no more than 100+/-10
ms).

1.
A. Gather sensor data using the pressure

sensors and distance sensor.
B. Observe that the plots are updating in

real-time.
C. Check that the visualization corresponds

to the actions that resulted in the data in
real-time.

2.
A. Take similar, constant data with the same

results (good posture) as input.
B. Use a visual profiler software to get

statistics on the CPU utilization (Visual
Studio can do this).

C. The thread is sleeping when the CPU
utilization of that thread is about 0%.
Use a device with a lower hardware
thread count to make it easier to
determine.

3.
A. Create another program that can receive

data from the GUI.
B. Display the commands received from the

GUI and time the latency.
C. Compare the received results with the

actions and confirm the low latency.

1. 4
2. 2
3. 4

Table 9: Posture Analysis GUI (Software) RV Table

2.6. Software

The software involves programs that collect and analyze the sensor data from Bluetooth. This
will be the brains of the operation where good vs bad posture will be classified.

2.6.1. Data Processor

Data from 8 Force Sensitive Resistors and an Ultrasonic sensor must be received in real-time.
Good and bad posture will be used to classify the data input. Recommendations will be generated
based on the type of bad posture that was detected. Due to the variety of opinions on what is the
ideal posture, the best approach is to accept the main ideas behind some positions such as a flat
upper back or slight lordosis on the lower back accompanied with lumbar support [7].

This component will use a supervised learning classifier to examine the 9 inputs as features. This
model will be responsible for the binary classification of good or bad posture. Since we’re not
able to find the data we need to train such a classifier, we will have to collect our own data to
train the classifier. Therefore, the machine learning algorithm we use must be robust with a
relatively small training set.

Our main posture classification algorithm will be implemented as a Support Vector Machine
(SVM). We chose to use an SVM because it is reliable for small training sets and works nicely
for binary classification (and regression) [20]. Therefore, we can just use each sensor’s reading
as a feature and, depending on the separability of the data, perform kernel tricks to deduce
decision boundaries. Due to the lack of relevant, available posture data, we will be collecting our
own posture data for the training set. As with all supervised learning, we must be as thorough in
providing data for many cases/postures while being wary of the potential to overfit the classifier.
Refer to figures 1 and 2 for an idea of what the training set may consist of.

Figure 14 shows the control flow of the data processor. As we can see, it waits until it receives
the 10-bit sensor data from each sensor. Then, it will use the supervised model to classify if the
posture is good or bad. While it’s tempting to implement the SVM models from scratch, we will
instead be tuning the SVM classifier to best fit the data while avoiding overfitting from the
relatively training set (50-100 samples). The number and variety of samples will be selected such
that a validation set can achieve at least an 85% accuracy as desired from the high-level
requirements. The SVM we will be using will be from Sci-kit Learn using Python.

Figure 14: Data processor flowchart.

While SVMs are ideal for our case, it’s important to understand the complexity of the algorithm.
Since SVM is a quadratic programming problem, the implementation in Scikit Learn takes
between O(nfeatures x n2samples) and O(nfeatures x n3samples) time [22]. Since each sensor will be used as
a feature, nfeatures will be 9 and nsamples will be around 50-100, depending on how exhaustive we
decide to make our training set. Any more data in the training set will be too time-consuming.
The space requirements also scale at a similar rate, but that ultimately depends on the data we’re
using. Due to the scale invariance of Support Vector Machine algorithms, it is highly
recommended to scale/standardize the data with mean 0 and variance 1 [22]. In particular with
our dataset, we need to scale the pressure sensor readings to a baseline average of all the current

pressure sensors. This is needed because not all users will exert the same force on the sensors, so
using residuals will allow the data to be generalizable to many user types.

Since we are doing binary classification to determine if a posture is good or not, we need to
figure out which motor to send the vibration signal to. Given an exhaustive training set covering
most cases on each sensor, we can identify which vibration motor to activate by applying the
data to a nearest centroid classifier. The centroids are calculated in equation 8 where x is the
vector of feature data per sample and Cl is the set of indices belonging to class l [23]:

Eq. 8 [23]

After assigning the centroids, the prediction will use equation 9 below to select which centroid is
most similar (closest centroid to the current datapoint):

Eq. 9 [23]

The outcome y is then encoded into a two byte packet along with the magnitude of the largest
residual to determine which vibration motor and how intense. This packet will be sent to the
microcontroller for processing.

One might wonder why it’s necessary to use two classifiers instead of combining both into, say,
a multiclass SVM. This is a possibility, but SVMs are more natural as binary classifiers and since
further action is only taken when a bad posture is detected for a certain amount of time, the
nearest centroid classifier is not always used. Therefore, splitting the classifiers up allows for
more efficiency and customizability. The nearest centroid classifier can always be scrapped or
replaced if deemed too inaccurate, whereas having it built into the binary posture classifier may
require major restructuring in sensor data. This design decision was inspired by a modular
approach.

This component will also keep track of a vector of weights to apply to the sensor readings. We
will expand more on this calibration mechanism in section 2.8 Tolerance Analysis.

Requirement Verification Points

1. The supervised
learning model should
be trained with at least
50 samples

2. The classification
accuracy should be at
least 85%

3. Should be capable of
generating visual
feedback of heatmaps
of at-risk positions on
the body along with a
graph of posture
trends over time.

4. The classification time
should not take more
than 500 milliseconds.
The preferred
classification latency
is approximately
0-100ms

1.
A. A poorly trained model cannot accurately

classify data that are slightly unusual, so
provide various, distinct poses.

B. Record the posture data with the pressure
sensors and distance sensor.

C. Monitor the output from the software.
D. Observe any discrepancies from the nearest

centroid decision and expected motor
output.

2.
A. Create a substantial test set of sensor data

(at least 30 samples).
B. Apply the model to the samples and

observe the accuracy. It has to correctly
classify if a posture is good or bad at least
85% of the time.

3.
A. Apply an uneven amount of pressure on

one sensor over time (every 10 minutes for
an hour).

B. Observe the provided trend and hot spots.
4.

A. Acquire data in the data processing
program.

B. Classify the data by using the supervised
learning model.

C. Time how long it took to receive a
classification and compare it to the
requirement numbers.

1. 5
2. 5
3. 5
4. 5

Table 10: Software RV Table

2.7. Circuit Schematic

Figure 12 shows the schematic interaction between the sensors, the analog mux, the
microcontroller, the Bluetooth module, and the vibration motors. The 5V signals come from the
5V voltage regulator and the 3.3V signal comes from the 3.3V voltage regulator. While the Force
Sensitive Resistors and Vibration Motors appear in the schematic, they will actually be mounted
around the seat and back of the chair as illustrated in figure 4.

Figure 12: Circuit schematic.

2.8. Tolerance Analysis

The most critical overall features of this project are the sensor readings that provide data to infer
posture. These sensors include the pressure data calculated from the pressure sensors as well as
the slump distance recorded by the distance sensor. These readings are key to identifying the
posture of the user because they will be sent to the microcontroller and then sent to the computer
to be processed by the classification algorithms in the software module. The proper classification
of the posture depends entirely on the integrity of the data. No matter how good the model is or
how efficient the entire system is, inaccurate sensors will compromise the entire system. In the
ethics and safety section of this document, we explain the detrimental effects this may have on
the user.

2.8.1. Ultrasonic Sensor

We first consider the HC-SR04 ultrasonic sensor. The datasheet of the HC-SR04 states that the
sensor has a minimum range of 2 cm and measuring angle of 15° [12]. Because we do not
anticipate to detect over a 30 cm range for this project, we will not worry how far it can go
distance-wise as long as we leave a 2 cm distance from the back of the chair. We will, however,
consider the radius of coverage that is necessary to guarantee accurate readings. Using simple
trigonometry, we obtain the following equation for the height:

eight distance an(angle) h = * t elevation Eq. 10

For a distance of 30 cm and an angle of elevation of 15°, we get a maximum radius of about 8.04
cm. This means that the user should be over 8 cm taller than the height of the chair (where the
sensor is mounted) when positioned a distance of 30 cm away. Since we are in a three
dimensional world, this also applies to the width. The width can be an issue if the user is not
properly centered. In this case, the readings are inevitable and rely on the 4 m maximum range.
Outside of this range, the values may be non-deterministic. Therefore, the pressure sensors and
classification algorithms must be relied on to help detect extremely poor posture when the user is
not in view of the ultrasonic sensor.

2.8.2. Force Sensitive Resistors

When considering the pressure sensors, it’s important to note that Force Sensitive Resistors are
not very accurate. The FSRs can have accuracy ranges with a tolerance of ±5% to ±25% [11].
While these values can be wildly inaccurate, [8] and [9] both utilize them due to their ability to
be fitted onto a chair as well as the sufficient readings. While the accuracy is horrible, the FSRs
have a redeeming quality in that the force resolution has a tolerance of ±0.5% of the full use
force [11]. This means that the readings might not represent the actual force, but the granularity
is very high. Therefore, we must counter this inaccuracy through means of calibration.

2.8.3. Calibration

To calibrate the sensors, we introduce the concept of the perceptron weight update rule.
Perceptrons use weights w to classify data. They can be thought of as simplified neural networks.
However, we are only interested in how the perceptron weights are updated instead of classifying
things. We observe the perceptron weight update rule in equation 11 below:

Eq. 11 [21]

The weights w are updated with a portion of the input x with a learning rate 𝜶. This basically
adds a component of the input so that the new weights are more inclined to accept future similar

inputs. In our case, we want to weigh the sensor readings in the software component to accept
more similar values. As mentioned in the posture analysis GUI and data processor component
sections, this calibration occurs in software. The user will manually indicate that the current
posture should be learned. Then, the software will update the weights with the current sensor
readings. The learning rate will be determined through trial and error, but should, by convention,
be less than 1. This mechanism will introduce an overhead of vector multiplication that scales
linearly with the number of sensors (initially all weights of 1).

This tolerance calibration mechanism introduces many new features that make the product more
generalizable and customizable. Consider the case of a user with a disproportionate physical
figure e.g. amputee. The sensors will initially detect a weight imbalance, but if the user calibrates
the weights according to a posture that suits the user, then it will eventually learn the optimal
weights for proper posture classification. In addition, the potential accuracy offset can be filtered
out in a similar fashion where the user conforms to a good posture and updates the weights until
the classification algorithm provides satisfactory results. Since we are not worried about optimal
paths or overfitting in this case (remember, we’re not using the “perceptron” as a classifier), a
decay in learning rate is not necessary since new inputs can be just as relevant as previous inputs.

3 Costs

Assuming each partner makes $40/hour and spends 10 hours a week on the project, we can
model the labor cost below:

abor cost 3 6 weeks .5 48, 00L = · $40
hour · week

10 hours · 1 · 2 = $ 0 Eq. 12

Table 11 below displays the cost of the non-standard components we need to purchase. As seen
in the schematic, we will also need capacitors, a crystal, diodes, wires, and resistors. However,
these standard components can all be obtained at no cost for our project. Therefore, we will not
be including them in this section since they are not relevant at all to the cost.

Description Manufacturer Part # Quantity Unit Cost ($) Total Cost ($)

4-pack AA
Batteries

Energizer 39800011329 1 3.59 3.59

Battery Holder,
4AA with molex
connector

Keystone Electronics 2478CN

1 2.80 2.80

Force Sensitive
Resistor

Sparkfun Electronics SEN-09376 8 9.95 79.60

Ultrasonic
Sensor
HC-SR04

Sparkfun Electronics SEN-13959 1 3.95 3.95

ATmega328p Atmel DEV-10524 1 9.49 9.49

8-input Analog
Multiplexer

ON Semiconductor 74HC4051

1 4.00 4.00

Bluetooth
Module

Electronica 60 Norte HC-05 1 6.60 6.60

Vibration
Motors

Jinlong Machinery &
Electronics

C1034B018F 6 2.88 17.28

Table 11: Part costs.

Part total: $123.36. The total cost is the labor + part cost which is $48,123.36. This does not
account for shipping, which depends on the time sensitivity of the part’s arrival and can account
for a substantial portion of the actual cost.

https://www.digikey.com/product-detail/en/sparkfun-electronics/SEN-13959/1568-1421-ND/6193598

4 Schedule

Week Alex Pablo Emre

2/26/18 Order and test parts needed for the
project

Get parts needed for analog
parts of project

Complete the algorithm
designs.

3/5/18 Prototype the microcontroller and
write code to interact with the
sensors, Bluetooth, and the
vibration motors

Build voltage regulators and
test them

Help write code for the
sensors and Bluetooth.

3/12/18 Design and order the PCB for the
microcontroller using updated
schematics

Using voltage regulators, test
pressure sensors on a chair

Create visual feedback
system for user.
(Website?)

3/19/18 Plan and create posture training data Test distance sensor in
different circumstances
(light, interference…)

Collect many samples for
all the postures to be used
for classification, and
reevaluate algorithms.

3/26/18 Update the final PCB design and
write code for the data pipeline
between the microcontroller and the
computer

Test vibration motors on the
chair.

Complete the software
components.

4/2/18 Tune the posture classification
model and introduce more varied
sensor data (different positions or
people) to prevent overfitting

Using battery and voltage
regulators, connect all parts
and test they work altogether

Improve posture
classification data and
tune the algorithms
accordingly

4/9/18 Identify bottlenecks and optimize
the flow of data.

Connect analog parts to
microcontroller

Optimize the flow of data

4/16/18 Design the physical
placement/layout of components on
and around the chair

Test complete system
(without final assembly)

Test software
functionality and get
tester feedback

4/23/18 Gather data on the behavior of the
system (graphs, error, performance,
etc.)

Final assembly Demonstrate functionality
on a test group.

4/30/18 Test all functionality of the system
together.

Final test Final test

Table 12: Project implementation schedule

5 Ethics and safety
There is a certain risk in this project, which must be handled: the risk of having an electrical
system at a place in which a human being is going to sit.

The requirement to handle this problem is using enough isolation measures, such as using
insulating materials or putting critical components at places which are not too close to the user.
There could be around 100 mA of current flowing around the circuit, so protective measures
must be taken to avoid potential injury as a result of contact. Also, there are many components
spaced out around the chair. Naturally, there will also be a lot of wires and cables to handle
properly so that the user doesn’t get hurt by accidentally tampering with them. The primary
solution for this is to make the design as seamless as possible and keep things organized.

However, it is impossible to move away from the user all the components. For example, the
sensors need to be near the user, and in fact, the pressure sensors will be in contact with him or
her. These pressure sensors are the most critical part of the system, so an insulating material will
be put between the sensors and the user. This material must be strong enough to electrically
isolate the sensors and the user, but at the same time it must be soft, so when the user sits on the
chair the pressure sensors will be pressed, despite the fact that there is an insulating material
between them.

Other risks concern the physical assembly of the chair. However, we do not have the intention of
making the chair step by step, but using one to design the electrical system. This means that the
assembly of the chair should not be a problem for this project.

This aligns with the IEEE code of ethics. To be more specific, it follows point 1 of IEEE code of
ethics: to hold paramount the safety, health, and welfare of the public, to strive to comply with
ethical design and sustainable development practices, and to disclose promptly factors that might
endanger the public or the environment [5]. Our project may be useful to improve the people’s
health, which is obviously an ethical action.

For instance, if we follow a duty-based ethical theory, such as Kant’s deontology theory, it is
obviously ethical, because this theory states that an action is good if people would desire that it
would be an universal rule. I think that everybody agrees that helping people to improve their
health is something that is desirable for everybody, so it is ethical. However, as indicated by
IEEE Code of Ethics #3, we must be honest about our claims about what our data represents [5].
This system is intended to improve the posture of the user, but we cannot claim to diagnose or
treat potentially serious health issues related to posture. In fact, we’ll need to inform the public
using disclaimers to see more personalized experts such as their physician or more proven
techniques.

Based on our high-level requirement of at least an 85% classification accuracy, it’s important to
consider that no machine learning algorithm is perfect and fully generalizable to all cases. This
could result in odd cases where a bad posture is ignored or, even worse, a good posture is is
labeled as bad. This addresses the issue of IEEE Code of Ethics #9, where we must avoid
injuring users with false knowledge [5]. We included some measures to consider the user’s
actions such as through the use of perceptron weights to calibrate the sensor readings to the
user’s desired specifications. Also, our classifier will be made as accurate as possible with an
exhaustive training set.

Due to the collection and analysis of data, it’s also important not to use the user’s personal data
in wrong ways as highlighted in IEEE Code of Ethics #2: “to avoid real or perceived conflicts of
interest whenever possible, and to disclose them to affected parties when they do exist.” [5] For
example, a conflict of interest could occur if we were to sell posture data to clinics or other
companies selling posture tools. Of course, this can be avoided by only using the collected data
for the purpose of informing the user. This implication also applies to #5 where bribery should
be rejected by not selling user data without their permission.

References
[1] Acatoday.org, “Back Pain Facts and Statistics.” [Online]. Available:

https://www.acatoday.org/Patients/Health-Wellness-Information/Back-Pain-Facts-and-St
atistics. [Accessed: 08-Feb-2018].

[2] Acatoday.org, “Tips to Maintain Good Posture,” Posture. [Online]. Available:
https://acatoday.org/content/posture-power-how-to-correct-your-body-alignment.
[Accessed: 08-Feb-2018].

[3] D. Brown, “Experts say posture matters: The good ... and the bad,” GoUpstate,
10-May-2010. [Online]. Available:
http://www.goupstate.com/news/20100511/experts-say-posture-matters-the-good--and-th
e-bad. [Accessed: 08-Feb-2018].

[4] J. Flynn, “Is it possible to cure a bad posture?,” The Independent, 26-Oct-2015. [Online].
Available:
http://www.independent.co.uk/life-style/health-and-families/features/is-it-possible-to-cur
e-a-bad-posture-a6709781.html. [Accessed: 08-Feb-2018].

[5] Ieee.org, "IEEE IEEE Code of Ethics", 2018. [Online]. Available:
http://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 08-Feb-2018].

[6] “UNITED STATES DEPARTMENT OF LABOR,” Occupational Safety and Health
Administration. [Online]. Available:
https://www.osha.gov/SLTC/etools/computerworkstations/positions.html. [Accessed:
20-Feb-2018].

[7] A. Claus, J. Hides, G. Moseley, and P. Hodges, “Is ‘ideal’ sitting posture real?: Measurement
of spinal curves in four sitting postures,” Manual Therapy, vol. 14, no. 4, pp. 404-408,
June 2008. [Online]. Available: www.sciencedirect.com. [Accessed Feb. 20, 2018].

[8] Y. Zheng and J. Morrell, “A vibrotactile feedback approach to posture guidance” in Haptics
Symposium, 2010 IEEE, 25-26 March 2010 [Online]. Available: IEEE Xplore,
www.ieee.org. [Accessed 20-Feb-2018].

[9] L. Martins, R. Lucena, J. Belo, M. Santos, C. Quaresma, A. Jesus, and P. Vieira, “Intelligent
Chair Sensor Classification of Sitting Posture,” Communications in Computer and
Information Science, 2013. [Online]. Available: www.researchgate.com. [20-Feb-2018].

[10] J. J. Swearingen, C. D. Wheelwright, J. D. Garner, “An Analysis of Sitting Areas and
Pressures of Man,” Civil and Medical Research Institute, Oklahoma City, Oklahoma,
1962. [Online]. Available: www.faa.org. [Accessed 22-Feb-2018].

[11] Interlink Electronics, Inc., “Force Sensing Resistor Integration Guide and Evaluation Parts
Catalog.” [Online]. Available:
https://www.sparkfun.com/datasheets/Sensors/Pressure/fsrguide.pdf. [Accessed
22-Feb-2018].

http://www.sciencedirect.com/
http://www.ieee.org/
http://www.sciencedirect.com/
http://www.faa.org/
https://www.sparkfun.com/datasheets/Sensors/Pressure/fsrguide.pdf

[12] ElecFreaks, “Ultrasonic Ranging Module HC-SR04.” [Online]. Available:
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf. [Accessed
22-Feb-2018].

[13] Atmel, “8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System Programmable
Flash,” 2009. [Online]. Available:
https://www.sparkfun.com/datasheets/Components/SMD/ATMega328.pdf. [Accessed
22-Feb-2018].

[14] NXP Semiconductors, “74HC4051; 74HCT4051 8-channel analog
multiplexer/demultiplexer,” 2016. [Online]. Available:
https://cdn.sparkfun.com/assets/learn_tutorials/5/5/3/74HC_HCT4051.pdf. [Accessed
22-Feb-2018].

[15] "HC Serial Bluetooth Products User Instructional Manual", Cdn.makezine.com, 2018.
[Online]. Available:
https://cdn.makezine.com/uploads/2014/03/hc_hc-05-user-instructions-bluetooth.pdf.
[Accessed: 22-Feb-2018].

[16] Jinglong Machinery & Electronics, Inc., “Coin type vibration motor,” 2007. [Online]
Available:http://www.vibration-motor.com/products/download/C1034B018F.pdf.
[Accessed: 05-Mar-2018].

[17] Energizer Brands, LLC, “Energizer E91 Product Datasheet.” [Online]. Available:
http://data.energizer.com/pdfs/e91.pdf. [Accessed: 22- Feb- 2018].

[18] Vishay Semiconductors, “1N5221 - 1N526 Small Signal Zener Diodes,” 2008. [Online].
Available: http://www.vishay.com/docs/85588/1n5221.pdf. [Accessed: 22- Feb-2018].

[19] Motorola, “Bipolar Power Transistor Selector Guide & Cross Reference.” [Online].
Available: http://www.datasheets360.com/pdf/7456842635131963505. [Accessed: 22-
Feb- 2018].

[20] S. Lazebnik, “Support Vector Machines,” 2017. [Online]. Available:
http://slazebni.cs.illinois.edu/fall17/lec17_svm.pdf. [Accessed: 22- Feb- 2018].

[21] S. Lazebnik, “Neural Networks,” 2017. [Online]. Available:
http://slazebni.cs.illinois.edu/fall17/lec18_neural_nets.pdf. [Accessed: 22- Feb- 2018].

[22] “1.4. Support Vector Machines,” 1.4. Support Vector Machines - scikit-learn 0.19.1
documentation. [Online]. Available: http://scikit-learn.org/stable/modules/svm.html.
[Accessed: 26-Feb-2018].

[23] “Nearest centroid classifier,” Wikipedia, 17-Feb-2018. [Online]. Available:
https://en.wikipedia.org/wiki/Nearest_centroid_classifier. [Accessed: 26-Feb-2018].

[24] How to Build a Vibration Motor Circuit. [Online]. Available:
http://learningaboutelectronics.com/Articles/Vibration-motor-circuit.php. [Accessed:
05-Mar-2018].

https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
https://www.sparkfun.com/datasheets/Components/SMD/ATMega328.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/5/5/3/74HC_HCT4051.pdf
http://data.energizer.com/pdfs/e91.pdf
http://www.vishay.com/docs/85588/1n5221.pdf
http://www.datasheets360.com/pdf/7456842635131963505
http://slazebni.cs.illinois.edu/fall17/lec17_svm.pdf
http://slazebni.cs.illinois.edu/fall17/lec18_neural_nets.pdf

