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1 Introduction 
1.1. Objective 

According to the American Chiropractic Association, back pain is the leading cause of disability 
worldwide where it is estimated that 31 million Americans experience back pain [1]. The cost to 
remedy these back pain issues is reported at about $50 billion [1]. Among the many potential 
causes of back pain is improper posture that causes harm to the spine and many muscle groups in 
the body (depending on the pose) [2], [3]. Looking further at the displays of bad posture, it is 
noted that unhealthy sitting can lead to poor body positioning for prolonged periods of time, 
which adds stress to the muscles and bones [2]. It was found that people with ‘S’ shaped spines, 
possibly due to excessive slouching, tend to have more back problems than people with ‘J’ 
shaped spines [3]. Therefore, proper posture is essential to recovery and prevention of back 
problems, but this is more difficult to achieve once poor posture has been adopted [2]. 

Our goal is to develop a system of sensors embedded on a chair that can detect poor posture and 
notify the user of the presence of poor body positioning. We will use pressure sensors on the seat 
and the back as the main component of recognizing the weight distributions as well as a distance 
sensor to map out the position of the user. This sensor data will be sent to a computer for 
processing. We will use the data to develop a supervised learning model that will detect if the 
posture of the user is good or bad. If bad, the system may notify and guide the user to a better 
position through haptic feedback with vibration motors. The sensor data can also be used to 
analyze trends and provide insight on how to correct past and current detected posture issues. 
This addresses the problem of prolonged poor sitting posture since it notifies and educates the 
user about the risks of the user’s positions. 

1.2. Background 

As mentioned above, bad posture is a serious problem that could lead to health issues after 
prolonged use. Unfortunately, it’s possible to adopt bad posture subconsciously, which can be 
effectively countered by maintaining awareness for the user of such an issue and repeatedly 
correcting it [4]. As technology advances and more jobs require sitting for long periods of time, 
it’s becoming more important to develop safe methods that maintain the health and well-being of 
users [3]. Thus, a product that can aid in the correction of posture and isn’t as physically 
intrusive as many other proposed solutions would be ideal. 

When it comes to classifying whether a posture is good or bad, the distinction can be quite 
difficult to make. Figure 1 shows the differences between some common postures. Notice the 
difference in spinal curvature and center of mass. This difference is what we’ll be attempting to 
measure with the pressure sensors measuring the weight distribution and contact, and the 
distance sensor will be detecting the mid-upper spine curvature. There are many conflicting 



opinions about what is the ideal sitting posture. For this project, we consider flat, long lordosis, 
and short lordosis positions as generally acceptable with preference for short lordosis [7]. 

 

Figure 1: Four common sitting postures. Adapted from [7]. 

An illustration of some acceptable sitting angles is shown in figure 2. Note that while the back 
position may be the same, the pressure distribution can be drastically different. 

 

Figure 2: Three good working positions according to OSHA. Adapted from [6]. 

From our observations in [1], [2], [6], and [7], we have determined four main cases when we 
consider a posture is bad: 

● When the user spends too much time in the same position (lack of movement) 
● When the back of the user is too far from the back of the chair (kyphosed) 
● When the bottom of the user is too far from the back of the chair (slouching) 
● When the user sits with more strength on one of the sides of the chair (imbalanced) 



The features that make this project marketable include the many sensors embedded in a 
commonly used object (chair) that can help provide data to improve the health of the user. Not 
only does it remind the user to correct their posture, the data can also be processed and displayed 
on the computer for the user to understand what’s going on and how they can improve their 
positioning. To display the data, we will generate an illustration of the detected posture issues 
e.g. heat map of pressure imbalance. This project essentially aims to combat the common issue 
of bad posture with the use of a chair, which is commonly used for sitting for long periods of 
time. 

1.3. High-level requirements 

● The sensors must be sensitive enough to detect changes in sitting positions shown in 
figures 1 and 2 for adults. The microcontroller should distinguish a resolution of 
approximately 2cm for the ultrasonic sensor and 100g of mass for the pressure sensors to 
satisfy this sensitivity.  

● The posture detection model must be able to correctly classify bad sitting posture at least 
85% of the time. Correctness of posture is defined as a slight lordosis of the lumbar and 
flat or slightly kyphosed thoraco-lumbar angle [7]. OSHA recommended positions in 
figure 2 must also be considered [6]. 

● The chair must be power-efficient, ideally able to last at least 10 hours without changing 
batteries. For ~2500 mAh batteries, this corresponds to approximately no more than 250 
mA of current being drawn by the entire system. 

2 Design 
Figure 3 shows the block diagram of the system. The battery supplies power to the voltage 
regulators to distribute the appropriate voltages to the rest of the modules. The sensors provide 
data to the microcontroller that will be sent over Bluetooth to a computer for processing. The 
data collected by the computer will also be used to display trends and provide recommendations 
on the user’s posture along with the haptic feedback guidance from the vibration motors. These 
modules will satisfy the high-level requirements because the minimum amount of sensors and 
power is used to allow the system to work without draining too much power. The voltage 
regulator is more efficient than a voltage divider in that regard because current is drawn 
separately for the regulator than it is for the load. Also, the multiple sensors feeding information 
to the microcontroller attempt to provide enough data for higher classification rates and granular 
data with the help of the analog multiplexer. 



 

Figure 3: Block diagram 

Figure 4 shows the rough physical layout of the system. The pressure sensors on the seat attempt 
to record pressure changes in the areas near the knee and under the thigh, ischial tuberosities, 
lumbar, and shoulders. These sensor placements were found to be the most important and 
distinguishable areas for detecting different postures [8]. The distance sensor is mounted on the 
back, where it will sense the presence of a user and also detect the distance from the user’s spine. 
The distance detected from the user’s spine will help determine if the user is slouching along 
with the sensors near the knee. A single distance sensor is used because the user is expected to sit 
directly in front of the sensor. Even if the user is not sitting directly in front of the sensor, the 
pressure sensors will be able to conclude that based on the weight distribution. The rest of the 
components will be mounted behind the chair to avoid physical damage. Note that the actual 
number and placement of sensors will be determined through trial-and-error, but the targeted 
areas of the body to sense will be the same. 



 

Figure 4: Physical design sketch 

To work properly, the chair system will need six modules: power supply, sensors, control 
system, data stream, user interface and software. 

2.1. Power supply 

The power supply module is responsible for providing the power used by the other 
modules/components. The main voltages used are 3.3V and 5V. Adding up the power 
consumption from all the components below, we obtain the following table: 

 



Module/Component Approximate Power Usage (mW) 

Voltage Regulators 240 

Pressure Sensors 18.4 

Distance Sensor 75 

Microcontroller 26 

Bluetooth 26.4 

Vibration Motors 240 

 Table 1: Power Usage by Module/Component 

Therefore, the approximate maximum power consumption is ~625.8 mW. 

2.1.1. Battery 

The battery is the source of the power in the power supply module. We will not be designing it 
because the off-the-shelf product is sufficient for this project’s needs. The total voltage must be 
above the required 5V for most components. Therefore, the simplest option appears to be 4 
Energizer E91 alkaline AA batteries in series. Each battery contains up to 1.5V, so this provides 
1.5V*4 = 6V and the batteries have a capacity of approximately 2500mAh at a discharge current 
of 100mA [17]. Using Eq. 6, we find the current from the 6V batteries required to satisfy the 686 
mW power consumption of the system is ~104.3 mA. Therefore, the total time between complete 
discharges is slightly less than 2500 mAh / 104.3mA = ~24 hours, assuming a constant current 
and linear discharge. This is sufficient for our power usage high-level requirement, and can be 
used for several standard work days before requiring a change of batteries. Keep in mind that this 
power consumption calculation is more of a worst-case estimate since it assumes the vibration 
motors will always be on and drawing 80 ~ 120 mW of power and that the voltage regulators are 
drawing 120 mW each (which is not as efficient as off-the-shelf solutions). 

No requirements and verification are needed since we will not be designing any aspects of this 
component.  

2.1.2. Voltage regulators 

The voltage regulators have the duty of maintaining the desired voltages from the battery to the 
3.3V and 5V values. The components that will be using 3.3V are the Bluetooth module and the 
vibration motors. The 5V components are the microcontroller, analog multiplexer, pressure 
sensors, and distance sensor will be using 5V. 



To add complexity, we decided to make our own voltage regulators. We will need a total of two 
regulators since we need one to produce ~3.3V and the other to produce ~5V. The design 
includes a BJT NPN transistor and a Zener diode. It takes advantage of the Zener diode 
properties, which includes the fact that its voltage is approximately constant when it is in 
breakdown mode. 

 

 

Figure 5: 3.3V (left) and 5V (right) voltage regulator schematics. 

To calculate the components, we used the fact that the NPN diode MPSU06, by Motorola, has a                 
emitter-base voltage of 0.6V [19]. Thus, knowing that and the output voltage, we can easily               
calculate the Zener diode voltage (5.6V for the 5V regulator and 3.9V for the 3.3V regulator). To                 
calculate the resistor value, we first calculated the voltage across it, which is the amount of                
voltage to dissipate until it reaches the Zener diode breakdown voltage. Then, we followed the               
formula: 

Rv = V Rmin

I +Dmin
ILmax
h +1F E

Eq. 1 

Where IDmin is the minimum current in the Zener diode, which was taken from their datasheets: 
20 mA for 1N5228 and 1N5232 [18]. ILmax is the maximum load current, which was taken from 
making calculations of the elements that are going to be supplied by each linear regulator. We 
concluded that the 5V regulator, which powers the sensors, the microcontroller, and the analog 
multiplexer, has a load current of approximately 119.4 mA, and the 3.3V regulator, which 
powers the Bluetooth module and vibration motors, has a maximum current of ~128 mA. Refer 
to section 2.4.1 Bluetooth to understand the disparity in power consumption and maximum 
current of the 3.3V load. Moreover, we know that the parameter hfe, which relates the currents 
through base and collector, is 60 for this transistor [19]. With equation 1, we are able to calculate 
an approximate Rv, which is ~18 Ω for the 5V regulator and ~100 Ω for the 3.3V regulator. 



Since the voltage needs to be reduced from the 6V batteries, this results in some power 
dissipated in the voltage regulators. This current is roughly 20 mA using 6V each. Therefore, 240 
mW of power will be used up to regulate the voltages of 5V and 3.3V from the 6V source. While 
it’s possible to use a true minimum current through the zener diodes (somewhere around 1mA), 
the recommended/best practice is to use the test voltage. 

We did some simulations for voltage regulators using Simscape (a Matlab extension). We 
entered the next parameters: a Zener resistance of 0.1ohm for the Zener diodes, input voltages of 
5.5-6V (to see what happens if it varies) and we modeled the load as resistances. Knowing the 
output voltage and current, we used Ohm’s law to get the resistance values (80 Ω for the 3.3V 
regulator and 60 Ω for the 5V regulator). 

The results were good: a voltage of ~3.2V on the 3.3V regulator, and a voltage of ~4.8V on 5V 
one. These values are within the tolerance margin. The results are shown for the 5.5V and 6V 
inputs for the 5V regulator and similar results on the 3.3V regulator in figures 6 through 8. 

 

Figure 6: Output of the 5V voltage regulator given 5.50V input 

 

Figure 7: Output of the 5V regulator given a 6.00V input 



 

Figure 8: Output of the 3.3V voltage regulator given a 6V input 

Requirement Verification Points 

1. The 3.3V voltage 
regulator must 
consistently output 
voltages between 
3.0V - 3.6V given an 
input of 5.5-6V. 

2. The 5V voltage 
regulator must 
consistently output 
voltages between 
4.5V - 5.5V. 

3. The temperature must 
not exceed 125℃ 
while supplying 
power to avoid injury, 
destruction, and 
quicker depletion of 
the batteries. High 
temperatures will also 
affect the current 
output since VBE and 
VZ decrease as 
temperature increases 
[18], [19] 

1. 
A. Provide a 5.5-6V input signal into the       

3.3V regulator 
B. Check output voltage to make sure it’s       

within the desired range of 3.0-3.6V 
2. 

A. Provide a ~6V input signal to the 5V        
regulator 

B. Check the output voltage to ensure it’s       
within the range of 5V+/-0.5V 

3. 
A. During full operation of the system,      

measure the maximum temperature using     
a temperature sensor. 

B. Also measure the current to ensure 

1. 1  
2. 1  
3. 1  

Table 2: Voltage Regulators RV Table 



2.2. Sensors 

2.2.1. Pressure Sensors 

We will use 8 pressure sensors to detect the critical areas of distinguishing postures as illustrated 
in figure 4. The pressure sensors we will be using are SEN-09376 Force Sensitive Resistors 
(FSR). These 1.75”x1.75” FSRs are flexible and can support applied force in the range of 100g 
to 10kg [11]. Load cells are an alternative to FSRs, and they can provide more accurate and 
sensitive readings. However, load cells are more difficult to work with since many other 
components are needed to amplify and detect the signal changes. There are also issues with 
placing them physically on the chair since the center tab needs elevation to allow displacement 
and the metal bracket will not be comfortable to sit on. The FSR we will be using is convenient 
in that the thinness and flexibility allow more comfort without being drastically more expensive. 
The primary concern is that there exists a possibility that the supported force range is not 
sufficient. We will now perform an analysis on the feasibility of the 0.1-10 kg range. 

Considering a 100 kg user and the average sitting area of adults is 179.4 in2 [10]. To figure out 
the pressure, we first need to obtain the force. Force is the product of mass and acceleration as 
shown in Eq. 2 below. 

 F = m * a Eq. 2 

Using Eq. 2 with m = 100 kg and the acceleration due to gravity  a = 9.8 m/s2, the force of the 
user is calculated as 980 N. Pressure is defined as force per area as shown in Eq. 3. 

ressureP = F
Area Eq. 3 

Thus, applying the user’s force F = 980 N and the sitting area = 179.4 in2 = 0.1157 m2, we get the 
resulting pressure of 8470 Pa. Using the conversion rate of 1 Pa = 0.000145 psi, the conversion 
to psi is now 1.228 psi. Now multiplying the pressure with the SEN-09376 area of 1.75”x1.75”, 
we obtain the number of pounds per sensor as 3.76 lbs. Converting this to kilograms yields a 
result of 1.706 kg per sensor. Therefore, an even distribution of force of a 100 kg user on the 
average sitting area is well within the range of the SEN-09376 Force Sensitive Resistor.  

The power consumed by the FSR is easy to calculate. We first consider the relationship of 
resistance and force. As seen in figure 9, the relationship is linear since both scales are 
logarithmic. Based off of the calculations above, the FSR should be set to approximately 1 kΩ 
and will be put in series with a 10 kΩ resistor as recommended in [11]. The equation for power 
in terms of voltage and resistance is shown below. 

P = R
V 2

Eq. 4 



Therefore, applying V = 5V and R = 11 kΩ, the average power consumption for each sensor is 
~2.3 mW. The average total power for 8 sensors is 8*2.3= ~18.4 mW. 

 

 

Figure 9: Resistance vs. Force for a Force Sensitive Resistor. Adapted from [11]. 

As seen in figure 10 below, we will take advantage of the fact that the force sensitive resistor 
varies in resistance. A constant 5V voltage input with a constant 10 kΩ resistor in series in a 
resistor divider circuit will allow changes in vout to be directly attributed to the change in 
resistance of the FSR. This output voltage will used as input to the next component: the analog 
multiplexer.  

 

Figure 10: Force sensitive resistor schematic 



Requirement Verification Points 

1. When no pressure is 
applied, the voltage 
reading should be 
approximately 0 and 
the current should be 
less than 0.05 mA. 

2. A neutral balanced 
sitting position with 
two sensors on both 
sides of the body 
should output voltages 
within 0.1V. 

3. Varying the weight on 
each sensor from ~50g 
to ~1kg should result 
in a change in 
resistance from 
~10kΩ to ~1kΩ  

4. Sensor readings 
should be consistent 
within around 0.5V 
for a user who is 
sitting still in any 
position. 

1.  
A. Use a DC generator to supply 5V as the 

input voltage.  
B. Measure the voltage and current between 

the resistor and the FSR using a voltmeter 
and ammeter. The result should be less 
than 0.05 mA current and about 0 V. 

2.  
A. Place two sensors directly under the ischial 

tuberosity of the subject. 
B. Use a leveler to ensure the user is level and 

balanced. 
C. Measure the voltages to make sure the 

difference is within 0.1V. 
3.  

A. Obtain a set of weights from 50g to 1kg 
B. Place the 50g weight on the pressure 

sensor and obtain the output. 
C. Next, add weights until ~1kg is reached. 
D. Measure and calculate the resistance using 

a multimeter and the obtained values 
should be around 10kΩ and 1kΩ. 

4. 
A.  Sit on a pressure sensor. 
B. Take an initial reading with a voltmeter 

and have the user continue to remain in the 
initial pose. 

C. Continue to take measurements every 20 
seconds for 10 minutes, and check to make 
sure all values are close (within ~0.5V). 

1. 0 
2. 2 
3. 0 
4. 0 

Table 3: Pressure Sensors RV Table 

2.2.2. Distance sensor 

Along with the measurements of pressure distribution around the seat and back, we will also 
want to know the distance between the back of the user and the back of the chair. This 
information will be useful in distinguishing the postures shown in figure 1. In particular, it helps 
detect the slump posture from the other acceptable ones. To do this, we will use an HC-SR04 



Ultrasonic Sensor. This sensor emits 8 cycle bursts of 40kHz ultrasonic waves in response to a 
10 microsecond trigger and outputs a high signal for the duration that it took to receive the 
reflected ultrasound [12]. As seen in figure 11, the distance sensor has four pins: two of them are 
the supply pins (supply voltage and ground) and the other ones are the trigger and echo. The 
trigger essentially toggles the output of ultrasonic waves, and echo outputs a high signal for the 
round trip duration that it took to receive the ultrasonic waves. 

 

Figure 11: HC-SR04 pin diagram. 

Since the waves travel at the speed of sound and they make a round trip, the distance can be 
measured using the equation below where 340 m/s is the speed of sound: 

istance 40D = 3 * 2
time Eq. 5 

Using the above numbers, we can calculate the time it takes to take a reading. Given how we 
don’t expect to see distances over 30cm, we can calculate the maximum round trip time for the 
sound to propagate as 2*0.3/340 = 1.765 ms. Since 8 cycles of a 40kHz are emitted, the latency 
of that is 8 cycles/40,000 cycles/second = 200 microseconds. So adding the latencies together, 
the maximum latency expected for this sensor in this project is 10 microseconds + 200 
microseconds + 1.765ms ≅ 2 ms 

The ultrasonic sensor was chosen over alternatives such as infrared because of the ease of use, 
robustness in lighting conditions, and low cost. The ultrasonic sensor requires 5V as input and 
operates on 15mA of current [12]. So the power can be calculated using Eq. 6.  

V  P = I Eq. 6 

With V=5V and I = 15mA, the average power usage of the ultrasonic sensor is 75 mW.  

 

 

 

 



Requirement Verification Points 

1. Obtain distance 
values of between 
2-30 cm that are 
accurate within 2 cm 

2. Detect severe slump 
postures of around 
45-60 degrees 
measured from the 
seat of the chair from 
distances 10-30 cm 
away when mounted 
on the chair. 

3. The plot of time vs 
slump angle should be 
linearly proportional 
(the readings should 
not register 
out-of-range objects 
while slumping). 

4. The latency of 
operation should be 
no more than 
2ms+/-0.2ms 

1. 
A. Hook the sensor up to a microcontroller such 

as an Arduino and place it at the base of a 
meter stick. 

B. Use a large textbook and measure values 
starting at 2 cm away up to 30 cm away. 

C. Every measurement should be accurate 
within 2 cm. 

2.  
A. Mount the ultrasonic sensor on the top of the 

back of a chair. 
B. Have the user sit on the chair and measure an 

angle within 45-60 of the back using a 
protractor, and have the user sit 10-30 cm 
away. 

C. Measure the output value of the ultrasonic 
sensor from the microcontroller and ensure 
the values correspond to the selected distance 
values. 

3.  
A. Using the same setup from requirement 2, 

the user starts at a neutral 90 degree upright 
position. 

B. Record data as the user slowly slumps over 
until 45 degrees is reached. 

C. Plot the data and determine a linear 
relationship between the distance and slump 
angle. 

4. 
A. Position the ultrasonic sensor at the base of a 

meter stick facing a textbook 30 cm away. 
B. In the microcontroller code, insert timer 

statements to capture the time directly before 
the trigger and directly after receiving the 
echo. 

C. Run the code and make sure the latency is 
less than 2ms+/-0.2ms 

D. Repeat from step A 100 times for 
consistency. 

1. 0  
2. 3 
3. 0  
4. 0  

Table 4: Distance Sensor RV Table 



2.3. Control system 

The control system takes the sensor data as input and presents it in a format to send the data to 
the Bluetooth Module in the data stream module. It will then also accept a response from the data 
stream to determine actions to output to the vibration motors in the user interface module. 

2.3.1. Microcontroller 

This is a key part of the project. Think of it like the spinal cord: it connects the information from 
the brain (software) to the sensors and actuators (sensors, vibration motors, etc.). The 
microcontroller will take the inputs, which are: 

● 1 analog input from 8 pressure sensors pressure sensors 
● 1 digital input from the distance sensor 
● 2-byte Bluetooth input from the computer through the data stream 

The outputs will be: 

● 10-bit data for each sensor reading to the computer through Bluetooth 
● 6 PWM voltages between 2.3-3.3V each to a vibration motor circuit 
● 3 digital outputs to select the next pressure sensor to read from the analog mux 

To accomplish the above specifications, an ATmega328P with 16Mhz frequency, 32KB flash 
memory, 2KB SRAM, 10-bit ADC, and 23 programmable I/O pins will be used [13]. The pins of 
interest are the analog inputs for the pressure sensors, digital input and output for the ultrasonic 
sensor, PWM pins to control the vibration motors, RX and TX pins for Bluetooth, and digital 
output pins for the analog multiplexer selection. It should be noted that the maximum current that 
a pin can output is 40 mA, so special can needs to be taken when powering the power-intensive 
vibration motors [13]. This microcontroller was selected over alternatives due to the popularity, 
resulting in abundant documentation, as well as familiarity and ease of programmability since it 
is used in an Arduino Uno. 

The microcontroller mainly behaves as the central link between components and an interface 
between hardware and software. Not only should it be able to poll all the pressure sensors from 
the analog mux using digital output, but it also has to receive ultrasonic sensor readings, send 
and receive data through Bluetooth, and power the vibration motors. Since the microcontroller 
has a single core and no multithreading capabilities, these tasks must be quick and/or 
non-blocking. Figure 12 shows what the control flow of the microcontroller will look like. It will 
continuously poll data from the sensors and the Bluetooth module to decide what to do. Note that 
the data can be sent directly after reading it or altogether after all sensors have been read since 
the microcontroller is synchronous. Generally, being able to go through all the inputs and outputs 
of the microcontroller in several milliseconds is sufficient for the purpose of the project. Notice 



in figure 12 that it’s possible to not receive Bluetooth data in the current pass due to a slower 
data processing speed, so it will just check again in the next loop because the single-threaded 
nature of the microcontroller cannot afford to block the control flow just to receive data that may 
not arrive for a relatively long time. 

 

Figure 12: Microcontroller flowchart. 

A primary source of concern is the heavy use of one 10-bit ADC within the microcontroller for 
all 8 of the pressure sensors. The 10-bit ADC takes, on average, 13 clock cycles to perform a 
conversion and uses a recommended 50kHz to 200kHz input clock frequency [13]. Assuming the 
input clock frequency is 125kHz, then 13 cycles / 125000 cycles/second = 104 microseconds per 



conversion. 8 pressure sensors will result in a total conversion latency of 832 microseconds. This 
value is still under 1 ms, so it is incredibly fast to any user and not a big source of concern. 

The typical current for a 5V input at 8MHz is 5.2mA [13]. So the power consumption of an 
active microcontroller is approximately 26 mW but this will vary significantly depending on 
usage. 

Requirement Verification Points 

1. Can provide a linear 
2.3-3.3V signal using 
the PWM output pins 
while processing 
input signals and 
output less than 40 
mA. 

2. Use the 10 least 
significant bits of a 
received Bluetooth 
message as a 
mapping onto the 
2.3V-3.3V range with 
a granularity of 
1.0mV+/-0.2mV. 

3. Send appropriate 
signals to the 
corresponding 
vibration motor if bad 
posture is detected in 
that region (extract 
one-hot coded 
vibration motor 
positions from the 
most significant bit of 
the received 2-byte 
computer data) 

4. Loop through the 
sensor, Bluetooth, 
and vibration motor 
operations in less 
than 20 ms. 

1. 
A. Write code to cycle through the motors in order 

using the one-hot encoded top 6 bits. 
B. Measure the output voltage and current of the 

PWM pin at different increments with a 
multimeter. 

C. Each step should result in a difference of about 1 
mV with the lowest to highest values ranging 
from 2.3V to 3.3V. 

2. 
A. Collect input data from sensors 
B. While the data is being collected, program the 

vibration motor to periodically take in a 2.3-3.3V 
PWM signal. 

C. Monitor the inputs to ensure the data has not been 
corrupted, and make sure the vibration is 
perceived as continuous as it passes through 
loops. 

3. 
A. Apply heavy imbalance on the vibration motor 

designated as 000001. 
B. Check the received message for 000001 as the 6 

most significant bits. 
C. Physically check that the motor intensity 

corresponds to the intensity designated in the 
remaining 10 bits. 

4. 
A. Write code to check timestamps at the beginning 

and end of each loop. 
B. Run through the loop 100 and record the 

timestamps for each loop. 
C. Verify that the latency of each loop is within 

20ms under different sensor inputs (different 
poses). 

1. 0 
2. 2 
3. 2 
4. 1 



Table 5: Microcontroller RV Table 

2.3.2. Analog Multiplexer 

Due to a high number of pressure sensors needed, an analog multiplexer will be used to select the 
input to process by the 10-bit ADC. This component takes the analog outputs of the pressure 
sensors as input, then the microcontroller selects one of the sensors to read.  

While an alternative is to use a microcontroller with more pins, using the analog multiplexer 
makes it easier to scale the number of sensors. Also, it’s much easier and cheaper to obtain an 
analog mux than it is to find the appropriate microcontroller. If the need for 16 pressure sensors 
arises, the current 8-bit multiplexer can be replaced with a 16-bit multiplexer at the cost of an 
extra digital output pin (4 total to select each input). The number of sensors that can be read 
scales as O(2n) where n is the number of select bits/pins. However, keep in mind that the 
single-threaded microcontroller will require more time to poll a large pool of sensors. 

The 74HC4051 will be used as the analog mux. This multiplexer has 8 analog inputs and also 
uses three bits to select one of the 8 inputs with a typical time of 15ns [14]. It takes in 5V from 
the supply and also has a current usage of about 2 micro-amps. Therefore, the power usage is 
negligible. 

Requirement Verification Points 

1. Power dissipation per 
input must be less 
than 100 mW. 

2. Correct selection of 
inputs given 
corresponding 
selection signals 

1. 
A. Apply the pressure sensor inputs into the 

mux. 
B. Measure the product of current and 

voltage with a multimeter to determine if 
the power dissipation is under 100 mW. 

2. 
A. For each input of the mux starting from 

input 0, apply an input as the input 
number multiplied by 0.625V. (0V in 
input 0, 0.625V in input 1, 1.25 in input 
2, etc.). 

B. Input each combination of the 3 select 
signals (000, 001, 010, etc.). 

C. For each selection, check that the output 
is the correct voltage value. 

1. 1 
2. 0 

Table 6: Analog Multiplexer RV Table 
 
2.4. Data stream 



The Data Stream module is how the microcontroller will be communicating with the computer.              
The microcontroller will be sending the 10-bit converted sensor data for each sensor. Then, the               
computer will read it, process it, and it will return a course of action to the microcontroller (no op                   
vs. activate vibration motor x with intensity y). 

2.4.1. Bluetooth 

We will be using a Bluetooth connection to transmit data from the chair to the computer to be 
processed. The Bluetooth module will also be receiving commands from the computer to vibrate 
as one form of notifying the user. The Bluetooth stack we chose is an embedded system 
approach, because we are implementing a Bluetooth peripheral device. The Bluetooth module we 
have picked out is the HC-05. It is a simple TX/RX pipeline, and uses 3.3V with a 3.3V regulator 
on board so we can test it with an Arduino or a similar 5V board [15].  

The amount of current used by the HC-05 varies wildly, depending on the state. Initially, the 
module will be in pairing mode to attempt to establish a channel of communication with a nearby 
device. This pairing mode consumes at most 40 mA with an average of 25 mA [15]. After 
successfully pairing, it will begin communicating, so the usage drops to a stable 8 mA 
steady-state current [15]. Therefore, the worse case pairing power consumption is 3.3*40 = 132 
mW which drops to 26.4 mW after pairing with a device. However, we must consider the fact 
that if the Bluetooth hasn’t been paired, some components will not be able to function. Namely, 
the vibration motors will not be enabled. Peering ahead, we notice that the vibration motors have 
a steady-state power consumption of 240 mW with an average 3.0V input, which is significantly 
higher than the pairing power consumption. Also, the system is not expected to be in pairing 
mode for long periods of time since the system/chair is not expected to move out of range or pair 
with something else, so it will only be drawing 8 mA of current for the vast majority of the time. 
Therefore, the average power consumption will be considered ~26.4 mW. 

The range is up to approximately 30 feet. The HC-05 also has a 2.4GHz frequency and 9600bps 
default transmission rate configurable up to 1,382,400 baud rate [15]. The module is expected to 
have a 100% accuracy unless the chair drifts too far from the computer (over 30 feet away). 

To compute the transmission rate needed, we use the approximately 3 ms latency it takes to 
collect the sensor data where each sensor reading is sent as 10 bits. Therefore, The minimum 
transmission rate for a 3 ms loop period is 90/0.003 = 30,000 bps. As we can see, this required 
rate is over 3 times higher than the default rate. So to improve the Bluetooth transmission 
efficiency, the default baud rate can be used while limiting the sensor data collection to 10 ms 
per loop or, better yet, use a baud rate over 30,000 bps. 

 



 

Requirement Verification Points 

1. Must be capable of 
transmitting 90 bits 
every loop through the 
sensors where the 
loop time can be 
estimated as low as 3 
ms. 

2. Must be capable of 
pairing and 
maintaining a stable 
connection of sending 
and receiving data 
from a computer 6 
feet away. 

3. Must be able to 
transmit data with 
approximately 0% 
error. 

1.  
A. Create a program that sends 90 bits of 

data through Bluetooth to a computer 
and record a timestamp. 

B. Create a timestamp on the receiving 
computer for each datum received. 

C. Compare the latency by finding the 
difference in timestamps. 

D. Repeat step A with a 1.3M baud rate 
and also with a 4800 baud rate. 

E. The bandwidth is congested if the 
transmission time is significantly 
slower (up to 0.5 seconds slower for 
heavy traffic). 

2.  
A. Use a tape measure to position the 

Bluetooth module 6 feet from the 
computer. 

B. Send 10-bit sensor data to the 
computer. 

C. Check that the data was received on 
the computer and send an 
acknowledgement to activate a 
vibration motor. 

D. Use a multimeter around the output 
pin check that a signal is created in 
response to the received message. 

3. 
A. Randomly generate 1000 10-bit 

values from the microcontroller. 
B. Transmit the 1000 value sequentially 

to the computer through the Bluetooth 
module. 

C. The computer will then transmit the 
data back after receiving it. 

D. When the microcontroller receives 
data, compare it to the expected value. 

E. This requirement is satisfied when 
only 1000 values are received and 
correct. 

1. 2 
2. 0 
3. 0 



Table 7: Bluetooth RV Table 

2.5. User interface 

The user interface is how the system communicates with the user. The communication media can 
be through the vibration motors when bad posture is detected or through the visualization and 
recommendation program from the software. We will attempt to highlight areas that are at risk of 
injury due to poor posture. This data will be specific to the user since it learns the posture trends 
of the user. The user interface may eventually be implemented through a website, but this may be 
replaced with a program that creates a GUI locally. That is where all the necessary calculations 
can take place and it’s easy to access and communicate with the user. 

 

2.5.1. Vibration motors 

We will use 6 C1034B018F vibration motors mounted in various regions near their 
corresponding pressure sensors. These vibration motors operate on 2.7~3.3V with a starting 
voltage of 2.3V, which scales linearly with intensity [16]. They will be toggled individually by 
the microcontroller, occupying all 6 of the available PWM pins. We elected to occupy all the 
PWM pins because the motors have a maximum steady-state current draw of ~80 mA, which is 
about double the ~40 mA maximum current output of a digital pin of the ATmega328p [16], 
[13]. Each motor has a rated speed, current, voltage, and noise of ~9000 rpm, ~80mA, 3.0V, and 
~50dB, respectively [16]. These values show that a lot of power is used to generate mechanical 
movement that translates to a noticeable sound, which is ideal for the purpose of notifying the 
user. The power usage at the rated settings is approximately 240 mW.  

Since the vibration motors are DC motors with an inductor element inside, we must be cautious 
about the properties associated with that. In particular, we should that inductors produce back 
EMF in response to a change in current. Consider equation 7 below where L is the inductance, 
dI/dt is the change in current across the inductor with respect to time, and V is the voltage across 
the inductor: 

V = L dt
dI Eq. 7 

When a motor is at steady-state, the change in current is small or 0 so the voltage is essentially 0. 
When the power is switched off, the change in current becomes negative. This will result in a 
negative voltage which means the inductor is now supplying current proportional to the change 
in current from the source. This can result in catastrophic voltage levels that may damage 
components in different parts of the circuit. To remedy this issue, we place the vibration motors 
in a circuit shown in figure 13 below. The parallel reverse-biased (also known as a “flyback”) 
diode is used to absorb all of the back emf from the motor when the motor is turning off. The 



NPN transistor allows the microcontroller to supply a low current digital output that will connect 
the motor to ground and turn it on. 

 

Figure 13: Vibration motor circuit. Adapted from [24]. 

While we have been able to devise a solution for the back emf with figure 10, there’s another 
problem with DC motors: inrush current. This issue is another consequence of inductors and 
motors in general where a motor at rest will require a large amount of current because of several 
properties mentioned above related to equation 7. Basically, the inrush current will be very high 
but will eventually stabilize. There are solutions to combat this such as current limiters and large 
capacitors. However, for the sake of simplicity, we will be using the method of ramping up the 
effective voltage through PWM. With PWM, we can slowly raise the voltage during the inrush 
current phase until steady state so that the inrush current will not be dangerously high. Starting 
the PWM ramp from ~2.3V will result in a manageable ~120 mA current draw [16]. Therefore, 
the startup current power consumption of approximately 276 mW. This power consumption is 
close to the steady-state value of ~240 mW, so we will say that the average usage is 
approximately ~240 mW. 

 

 

 

 

 

 



Requirement Verification Points 

1. Must be noticeable 
under a thin cushion 
when operating on 
3.0V+/-0.3V. 

2. The current draw of 
the motor must not 
exceed 120 mA when 
applying a ramped 
PWM signal.  

3. Must be spaced at 
least 2-3 inches away 
from the nearest 
pressure sensor to 
avoid interference. 

1. 
A. Connect the vibration motor to a 3.3V 

source as in figure 10 above. 
B. Place the device under a cushion and 

determine if the vibrations can be felt. 
2. 

A. Configure the circuit in figure 10. 
B. Starting with a ~2.3V PWM signal, 

slowly increase the voltage to ~3.0V. 
C. Measure current with an ammeter 

throughout and make sure the current 
never exceeds 120 mA. 

3. 
A. Obtain a ruler and mark 2-3 inch radiuses 

around each pressure sensor. 
B. No motors should be inside the marked 

areas. 
C. Move the remaining motors near their 

designated locations that do not intersect 
the off-bounds territory. 

1. 2 
2. 1 
3. 1 

Table 8: Vibration Motors RV Table 

2.5.2. Posture Analysis GUI (software) 

The posture analysis is a form of digital feedback for the user to view. This will include a graph 
of posture trends and movement to track progress. It will also notify the user about reasons the 
vibration motors were triggered e.g. too much weight was shifted onto the right thigh. Similar to 
the applications that log activity details, this is designed to allow the user to gain a better 
understanding of the ubiquity of posture issues and what to do to mitigate those issues. As an 
additional feature that will be discussed in greater detail in the tolerance analysis section, there 
will also be a “calibration” button on the GUI for the user to toggle. This button will allow the 
user to customize the interpretation of sensor readings to conform to a more ideal posture. This 
can be thought of as a feedback loop in software. 

 

 

 

 



Requirement Verification Points 

1. Can display messages 
and pressure maps on 
the user’s computer 
within 100 ms of the 
readings being 
detected. 

2. Runs on a separate 
thread from the main 
data processing thread 
and utilizes 
approximately 0% CPU 
when no change is 
detected from the 
previous readings. 

3. Can communicate with 
the data processing 
program/process/thread 
to provide user 
interactions (calibration 
button, viewing 
different timescales, 
etc.) with little latency 
(no more than 100+/-10 
ms). 

1. 
A. Gather sensor data using the pressure 

sensors and distance sensor. 
B. Observe that the plots are updating in 

real-time. 
C. Check that the visualization corresponds 

to the actions that resulted in the data in 
real-time. 

2. 
A. Take similar, constant data with the same 

results (good posture) as input. 
B. Use a visual profiler software to get 

statistics on the CPU utilization (Visual 
Studio can do this). 

C. The thread is sleeping when the CPU 
utilization of that thread is about 0%. 
Use a device with a lower hardware 
thread count to make it easier to 
determine. 

3.  
A. Create another program that can receive 

data from the GUI. 
B. Display the commands received from the 

GUI and time the latency. 
C. Compare the received results with the 

actions and confirm the low latency. 

1. 4 
2. 2 
3. 4 

Table 9: Posture Analysis GUI (Software) RV Table 

2.6. Software 

The software involves programs that collect and analyze the sensor data from Bluetooth. This 
will be the brains of the operation where good vs bad posture will be classified. 

2.6.1. Data Processor 

Data from 8 Force Sensitive Resistors and an Ultrasonic sensor must be received in real-time. 
Good and bad posture will be used to classify the data input. Recommendations will be generated 
based on the type of bad posture that was detected. Due to the variety of opinions on what is the 
ideal posture, the best approach is to accept the main ideas behind some positions such as a flat 
upper back or slight lordosis on the lower back accompanied with lumbar support [7].  



This component will use a supervised learning classifier to examine the 9 inputs as features. This 
model will be responsible for the binary classification of good or bad posture. Since we’re not 
able to find the data we need to train such a classifier, we will have to collect our own data to 
train the classifier. Therefore, the machine learning algorithm we use must be robust with a 
relatively small training set.  

Our main posture classification algorithm will be implemented as a Support Vector Machine 
(SVM). We chose to use an SVM because it is reliable for small training sets and works nicely 
for binary classification (and regression) [20]. Therefore, we can just use each sensor’s reading 
as a feature and, depending on the separability of the data, perform kernel tricks to deduce 
decision boundaries. Due to the lack of relevant, available posture data, we will be collecting our 
own posture data for the training set. As with all supervised learning, we must be as thorough in 
providing data for many cases/postures while being wary of the potential to overfit the classifier. 
Refer to figures 1 and 2 for an idea of what the training set may consist of. 

Figure 14 shows the control flow of the data processor. As we can see, it waits until it receives 
the 10-bit sensor data from each sensor. Then, it will use the supervised model to classify if the 
posture is good or bad. While it’s tempting to implement the SVM models from scratch, we will 
instead be tuning the SVM classifier to best fit the data while avoiding overfitting from the 
relatively training set (50-100 samples). The number and variety of samples will be selected such 
that a validation set can achieve at least an 85% accuracy as desired from the high-level 
requirements. The SVM we will be using will be from Sci-kit Learn using Python.  



 

Figure 14: Data processor flowchart. 

While SVMs are ideal for our case, it’s important to understand the complexity of the algorithm. 
Since SVM is a quadratic programming problem, the implementation in Scikit Learn takes 
between O(nfeatures x n2samples) and  O(nfeatures x n3samples) time [22]. Since each sensor will be used as 
a feature, nfeatures will be 9 and nsamples will be around 50-100, depending on how exhaustive we 
decide to make our training set. Any more data in the training set will be too time-consuming. 
The space requirements also scale at a similar rate, but that ultimately depends on the data we’re 
using. Due to the scale invariance of Support Vector Machine algorithms, it is highly 
recommended to scale/standardize the data with mean 0 and variance 1 [22]. In particular with 
our dataset, we need to scale the pressure sensor readings to a baseline average of all the current 



pressure sensors. This is needed because not all users will exert the same force on the sensors, so 
using residuals will allow the data to be generalizable to many user types.  

Since we are doing binary classification to determine if a posture is good or not, we need to 
figure out which motor to send the vibration signal to. Given an exhaustive training set covering 
most cases on each sensor, we can identify which vibration motor to activate by applying the 
data to a nearest centroid classifier. The centroids are calculated in equation 8 where x is the 
vector of feature data per sample and Cl is the set of indices belonging to class l [23]: 

Eq. 8 [23] 

After assigning the centroids, the prediction will use equation 9 below to select which centroid is 
most similar (closest centroid to the current datapoint): 

Eq. 9 [23] 

The outcome y is then encoded into a two byte packet along with the magnitude of the largest 
residual to determine which vibration motor and how intense. This packet will be sent to the 
microcontroller for processing.  

One might wonder why it’s necessary to use two classifiers instead of combining both into, say, 
a multiclass SVM. This is a possibility, but SVMs are more natural as binary classifiers and since 
further action is only taken when a bad posture is detected for a certain amount of time, the 
nearest centroid classifier is not always used. Therefore, splitting the classifiers up allows for 
more efficiency and customizability. The nearest centroid classifier can always be scrapped or 
replaced if deemed too inaccurate, whereas having it built into the binary posture classifier may 
require major restructuring in sensor data. This design decision was inspired by a modular 
approach. 

This component will also keep track of a vector of weights to apply to the sensor readings. We 
will expand more on this calibration mechanism in section 2.8 Tolerance Analysis. 

 

 

 

 

 



Requirement Verification Points 

1. The supervised 
learning model should 
be trained with at least 
50 samples 

2. The classification 
accuracy should be at 
least 85% 

3. Should be capable of 
generating visual 
feedback of heatmaps 
of at-risk positions on 
the body along with a 
graph of posture 
trends over time. 

4. The classification time 
should not take more 
than 500 milliseconds. 
The preferred 
classification latency 
is approximately 
0-100ms 

1.  
A. A poorly trained model cannot accurately 

classify data that are slightly unusual, so 
provide various, distinct poses. 

B. Record the posture data with the pressure 
sensors and distance sensor. 

C. Monitor the output from the software. 
D. Observe any discrepancies from the nearest 

centroid decision and expected motor 
output. 

2. 
A. Create a substantial test set of sensor data 

(at least 30 samples). 
B. Apply the model to the samples and 

observe the accuracy. It has to correctly 
classify if a posture is good or bad at least 
85% of the time. 

3. 
A. Apply an uneven amount of pressure on 

one sensor over time (every 10 minutes for 
an hour). 

B. Observe the provided trend and hot spots. 
4. 

A. Acquire data in the data processing 
program. 

B. Classify the data by using the supervised 
learning model. 

C. Time how long it took to receive a 
classification and compare it to the 
requirement numbers. 

1. 5 
2. 5 
3. 5 
4. 5 

Table 10: Software RV Table 

2.7. Circuit Schematic 

Figure 12 shows the schematic interaction between the sensors, the analog mux, the 
microcontroller, the Bluetooth module, and the vibration motors. The 5V signals come from the 
5V voltage regulator and the 3.3V signal comes from the 3.3V voltage regulator. While the Force 
Sensitive Resistors and Vibration Motors appear in the schematic, they will actually be mounted 
around the seat and back of the chair as illustrated in figure 4. 



 

Figure 12: Circuit schematic. 

2.8. Tolerance Analysis 

The most critical overall features of this project are the sensor readings that provide data to infer 
posture. These sensors include the pressure data calculated from the pressure sensors as well as 
the slump distance recorded by the distance sensor. These readings are key to identifying the 
posture of the user because they will be sent to the microcontroller and then sent to the computer 
to be processed by the classification algorithms in the software module. The proper classification 
of the posture depends entirely on the integrity of the data. No matter how good the model is or 
how efficient the entire system is, inaccurate sensors will compromise the entire system. In the 
ethics and safety section of this document, we explain the detrimental effects this may have on 
the user. 



2.8.1. Ultrasonic Sensor 

We first consider the HC-SR04 ultrasonic sensor. The datasheet of the HC-SR04 states that the 
sensor has a minimum range of 2 cm and measuring angle of 15° [12]. Because we do not 
anticipate to detect over a 30 cm range for this project, we will not worry how far it can go 
distance-wise as long as we leave a 2 cm distance from the back of the chair. We will, however, 
consider the radius of coverage that is necessary to guarantee accurate readings. Using simple 
trigonometry, we obtain the following equation for the height: 

eight distance an(angle )  h =  * t elevation Eq. 10 

For a distance of 30 cm and an angle of elevation of 15°, we get a maximum radius of about 8.04 
cm. This means that the user should be over 8 cm taller than the height of the chair (where the 
sensor is mounted) when positioned a distance of 30 cm away. Since we are in a three 
dimensional world, this also applies to the width. The width can be an issue if the user is not 
properly centered. In this case, the readings are inevitable and rely on the 4 m maximum range. 
Outside of this range, the values may be non-deterministic. Therefore, the pressure sensors and 
classification algorithms must be relied on to help detect extremely poor posture when the user is 
not in view of the ultrasonic sensor. 

2.8.2. Force Sensitive Resistors 

When considering the pressure sensors, it’s important to note that Force Sensitive Resistors are 
not very accurate. The FSRs can have accuracy ranges with a tolerance of ±5% to ±25% [11]. 
While these values can be wildly inaccurate, [8] and [9] both utilize them due to their ability to 
be fitted onto a chair as well as the sufficient readings. While the accuracy is horrible, the FSRs 
have a redeeming quality in that the force resolution has a tolerance of ±0.5% of the full use 
force [11]. This means that the readings might not represent the actual force, but the granularity 
is very high. Therefore, we must counter this inaccuracy through means of calibration. 

2.8.3. Calibration 

To calibrate the sensors, we introduce the concept of the perceptron weight update rule. 
Perceptrons use weights w to classify data. They can be thought of as simplified neural networks. 
However, we are only interested in how the perceptron weights are updated instead of classifying 
things. We observe the perceptron weight update rule in equation 11 below: 

Eq. 11 [21] 

The weights w are updated with a portion of the input x with a learning rate 𝜶. This basically 
adds a component of the input so that the new weights are more inclined to accept future similar 



inputs. In our case, we want to weigh the sensor readings in the software component to accept 
more similar values. As mentioned in the posture analysis GUI and data processor component 
sections, this calibration occurs in software. The user will manually indicate that the current 
posture should be learned. Then, the software will update the weights with the current sensor 
readings. The learning rate will be determined through trial and error, but should, by convention, 
be less than 1. This mechanism will introduce an overhead of vector multiplication that scales 
linearly with the number of sensors (initially all weights of 1).  

This tolerance calibration mechanism introduces many new features that make the product more 
generalizable and customizable. Consider the case of a user with a disproportionate physical 
figure e.g. amputee. The sensors will initially detect a weight imbalance, but if the user calibrates 
the weights according to a posture that suits the user, then it will eventually learn the optimal 
weights for proper posture classification. In addition, the potential accuracy offset can be filtered 
out in a similar fashion where the user conforms to a good posture and updates the weights until 
the classification algorithm provides satisfactory results. Since we are not worried about optimal 
paths or overfitting in this case (remember, we’re not using the “perceptron” as a classifier), a 
decay in learning rate is not necessary since new inputs can be just as relevant as previous inputs. 

3 Costs 

Assuming each partner makes $40/hour and spends 10 hours a week on the project, we can                
model the labor cost below: 

abor cost 3 6 weeks .5 48, 00L =  · $40
hour · week

10 hours · 1 · 2 = $ 0 Eq. 12 

Table 11 below displays the cost of the non-standard components we need to purchase. As seen 
in the schematic, we will also need capacitors, a crystal, diodes, wires, and resistors. However, 
these standard components can all be obtained at no cost for our project. Therefore, we will not 
be including them in this section since they are not relevant at all to the cost. 

 

 

 

 

 

 



Description Manufacturer Part # Quantity Unit Cost ($) Total Cost ($) 

4-pack AA 
Batteries 

Energizer 39800011329 1 3.59 3.59 

Battery Holder, 
4AA with molex 
connector 

Keystone Electronics 2478CN 
 

1 2.80 2.80 

Force Sensitive 
Resistor 

Sparkfun Electronics SEN-09376 8 9.95 79.60 

Ultrasonic 
Sensor 
HC-SR04 

Sparkfun Electronics SEN-13959 1 3.95 3.95 

ATmega328p Atmel DEV-10524 1 9.49 9.49 

8-input Analog 
Multiplexer 

ON Semiconductor 74HC4051 
 

1 4.00 4.00 

Bluetooth 
Module 

Electronica 60 Norte HC-05 1 6.60 6.60 

Vibration 
Motors 

Jinlong Machinery & 
Electronics 

C1034B018F  6 2.88 17.28 

Table 11: Part costs. 

Part total: $123.36. The total cost is the labor + part cost which is $48,123.36. This does not 
account for shipping, which depends on the time sensitivity of the part’s arrival and can account 
for a substantial portion of the actual cost. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.digikey.com/product-detail/en/sparkfun-electronics/SEN-13959/1568-1421-ND/6193598


4 Schedule 

Week Alex Pablo Emre 

2/26/18 Order and test parts needed for the 
project 

Get parts needed for analog 
parts of project 

Complete the algorithm 
designs. 

3/5/18 Prototype the microcontroller and 
write code to interact with the 
sensors, Bluetooth, and the 
vibration motors 

Build voltage regulators and 
test them 

Help write code for the 
sensors and Bluetooth. 

3/12/18 Design and order the PCB for the 
microcontroller using updated 
schematics 

Using voltage regulators, test 
pressure sensors on a chair 

Create visual feedback 
system for user. 
(Website?) 

3/19/18 Plan and create posture training data Test distance sensor in 
different circumstances 
(light, interference…) 

Collect many samples for 
all the postures to be used 
for classification, and 
reevaluate algorithms. 

3/26/18 Update the final PCB design and 
write code for the data pipeline 
between the microcontroller and the 
computer 

Test vibration motors on the 
chair. 

Complete the software 
components. 

4/2/18 Tune the posture classification 
model and introduce more varied 
sensor data (different positions or 
people) to prevent overfitting 

Using battery and voltage 
regulators, connect all parts 
and test they work altogether 

Improve posture 
classification data and 
tune the algorithms 
accordingly 

4/9/18 Identify bottlenecks and optimize 
the flow of data.  

Connect analog parts to 
microcontroller  

Optimize the flow of data 

4/16/18 Design the physical 
placement/layout of components on 
and around the chair 

Test complete system 
(without final assembly) 

Test software 
functionality and get 
tester feedback 

4/23/18 Gather data on the behavior of the 
system (graphs, error, performance, 
etc.) 

Final assembly Demonstrate functionality 
on a test group. 

4/30/18 Test all functionality of the system 
together. 

Final test Final test 

Table 12: Project implementation schedule 



5 Ethics and safety 
There is a certain risk in this project, which must be handled: the risk of having an electrical 
system at a place in which a human being is going to sit.  

The requirement to handle this problem is using enough isolation measures, such as using 
insulating materials or putting critical components at places which are not too close to the user. 
There could be around 100 mA of current flowing around the circuit, so protective measures 
must be taken to avoid potential injury as a result of contact. Also, there are many components 
spaced out around the chair. Naturally, there will also be a lot of wires and cables to handle 
properly so that the user doesn’t get hurt by accidentally tampering with them. The primary 
solution for this is to make the design as seamless as possible and keep things organized. 

However, it is impossible to move away from the user all the components. For example, the 
sensors need to be near the user, and in fact, the pressure sensors will be in contact with him or 
her. These pressure sensors are the most critical part of the system, so an insulating material will 
be put between the sensors and the user. This material must be strong enough to electrically 
isolate the sensors and the user, but at the same time it must be soft, so when the user sits on the 
chair the pressure sensors will be pressed, despite the fact that there is an insulating material 
between them.  

Other risks concern the physical assembly of the chair. However, we do not have the intention of 
making the chair step by step, but using one to design the electrical system. This means that the 
assembly of the chair should not be a problem for this project.  

This aligns with the IEEE code of ethics. To be more specific, it follows point 1 of IEEE code of 
ethics: to hold paramount the safety, health, and welfare of the public, to strive to comply with 
ethical design and sustainable development practices, and to disclose promptly factors that might 
endanger the public or the environment [5]. Our project may be useful to improve the people’s 
health, which is obviously an ethical action.  

For instance, if we follow a duty-based ethical theory, such as Kant’s deontology theory, it is 
obviously ethical, because this theory states that an action is good if people would desire that it 
would be an universal rule. I think that everybody agrees that helping people to improve their 
health is something that is desirable for everybody, so it is ethical. However, as indicated by 
IEEE Code of Ethics #3, we must be honest about our claims about what our data represents [5]. 
This system is intended to improve the posture of the user, but we cannot claim to diagnose or 
treat potentially serious health issues related to posture. In fact, we’ll need to inform the public 
using disclaimers to see more personalized experts such as their physician or more proven 
techniques.  



Based on our high-level requirement of at least an 85% classification accuracy, it’s important to 
consider that no machine learning algorithm is perfect and fully generalizable to all cases. This 
could result in odd cases where a bad posture is ignored or, even worse, a good posture is is 
labeled as bad. This addresses the issue of IEEE Code of Ethics #9, where we must avoid 
injuring users with false knowledge [5]. We included some measures to consider the user’s 
actions such as through the use of perceptron weights to calibrate the sensor readings to the 
user’s desired specifications. Also, our classifier will be made as accurate as possible with an 
exhaustive training set.  

Due to the collection and analysis of data, it’s also important not to use the user’s personal data                  
in wrong ways as highlighted in IEEE Code of Ethics #2: “to avoid real or perceived conflicts of                  
interest whenever possible, and to disclose them to affected parties when they do exist.” [5] For                
example, a conflict of interest could occur if we were to sell posture data to clinics or other                  
companies selling posture tools. Of course, this can be avoided by only using the collected data                
for the purpose of informing the user. This implication also applies to #5 where bribery should                
be rejected by not selling user data without their permission.  
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