

 Dynamic Keyboard

 ECE 445 Design Review
 ​Team 20:

 Nigel Haran
 Jeevitesh Juneja

 TA: Xinrui Zhu

1

Contents
1. ​Introduction
 ​1.1 Objective​……………………………………………………………………………………….. 3
 ​1.2 Background​…………………………………………………………………………………..... 3
 ​1.3 High Level Requirement​……………………………………………………………………… 4
2. Design
 ​2.1 Block Diagram​…………………………………………………………………………………. 4
 ​2.2 Physical Design​……………………………………………………………………………….. 5
 ​2.3 Hardware Design​ …………………………………………………………………………….. 6
 ​2.3.1 Power System​………………………………………………………………………….. 6
 ​ 2.3.1.1 USB 2.0 Power Supply​…………………………………………………...…... 6
 ​2.3.1.2 Voltage Regulator​……………………………………………………………… 6
 ​2.3.1.3 Voltage Divider​…………………………………………………………...……. 7
 ​2.3.2 Microcontroller​…………………………………………………………………………… 7
 ​2.3.3 User Interface​……………………………………………………………………………. 8
 ​2.3.3.1 LCD Display​…………………………………………………………………….. 8
 ​2.3.3.2 Program Switch​………………………………………………………………… 8
3.Calculation and Simulations​ ……………………………………………………………………… 9
 ​3.1 Voltage Regulator LM317​……………………………………………………………………. 9
 ​ 3.2 Voltage Divider​…………………………………………………………………………...….. 10
 ​3.3 Plots​…………………………………………………………………………………………... 10
 ​3.4 Software Design ​…………………………………………………………………………….. 11
 ​3.5 Tolerance Analysis ​…………………………………………………………………………...16
4. Requirement and Verification ​………………………………………………………………….. 19
5. Cost and Schedule​ ……………………………………………………………………………….. 22
 ​ 5.1. Cost Analysis​………………………………………………………………………………….. 22
 ​5.1.1 Parts​……………………………………………………………………………………... 22
 ​5.1.2 Labor​…………………………………………………………………………………….. 22
 ​5.1.3 Grand Total​……………………………………………………………………………… 23
 ​5.2. Schedule​………………………………………………………………………………………... 23
6. Ethics and Safety​………………………………………………………………………………….. 25
Citations ​………………………………………………………………………………………………. 27

2

1. Introduction
1.1 Objective
Programmable keyboards today suffer from the limitation of being programmed through a
software and having a lack of communication with the user regarding its functionality. This
limitation forces individuals to only be able to utilize their programmable keys through the
computer that programmed their keyboard. It also limits the user to using the one keyboard with
programmable keys. This can be an issue based on the fact that some keyboards are
programmed to provide efficiency, but cannot provide that efficiency with every computer it
interacts with.

We hope to resolve this issue by providing a programmable keyboard that is programmed
through the hardware of the keyboard itself, instead of the standard software program. What we
mean by this is most programmable keyboards use a computer software program to program
the keys to a program. Our product will be able to read the key interrupts and record them to a
programmable key. This allows one to have the keyboard layout that they desire and have a
single key represent a combination of keys. This is done by having an add-on product that reads
the keys being pressed through the USB output of the keyboard, recording it, and programming
it to a key on the keyboard while providing feedback to the user through an LCD display. By
having the keyboard use a hardware based programmable format, the macros that are
programmed can be applied to any computer. This is useful for many computer programs and
jobs that require the use of multiple key inputs that can become tedious over time. The design
we hope to apply is an add on that will record the combination of keys pressed and apply that to
a programmable key. However, this would potentially cause a lack of feedback for the user to
know whether the programmable key is reading all the functions. We will resolve this by
providing an LCD based attachment that will read the function that is being processed and
provide a display of the functions being executed at the time to show that the programmable
keys are performing what must be done.

1.2 Background
We feel this issue is important because the common software programmable keyboard suffer
the limitation of what computers and keyboards can utilize it. Currently on the market there are
programmable keyboards that are only programmable through a software process. Lately, they
have been designed to provide cosmetics such as color coding for the programmable keys or
extra buttons that provide shortcuts. Examples of these programmable keyboards are the
Logitech G810 [4], which provides the programmable keyboard with high end switches, LED
backlight, hardware built for gaming, etc. There is also the LogicKeyboard Astra [5], which
provides backlighting and custom imaging for the keycaps. These two examples are some of
the more popular choices when searching for a programmable keyboard. These examples show
that most programmable keyboards differ based on the cosmetics and parts used, while still

3

relying on software for the programming. Our design is trying to provide a keyboard that is
programmable through the hardware of the keyboard itself.

By having a keyboard be programmable through hardware it makes the programming aspect be
more accessible and no longer have limitation on which keyboard or computer it can be used
on. This also allows the keyboard to be independent of the program that is being used on the
computer. This is an issue with keyboards that are programmed to be used under a specific
computer and program. An example as to how this will be useful is that there are jobs that
revolve around using programs like photoshop where an individual has to press a series of keys
over and over again. By having a keyboard that can be programmable to perform the series of
keys pressed now held by a single key, they can perform their job more efficiently. By having a
keyboard that is programmable through the hardware, this individual can perform their job with
efficiency at any computer, instead of relying on the computer they used to program the
keyboard. By having the LCD display provide feedback it helps the user know what keys are
being registered and make sure that the programmable keys have been programmed correctly
and debug if there is any issue.

1.3 High-level requirements

● Provide user interface feedback of the keys being pressed through an LED display
● Write and rewrite programmable keys.
● Performs on any keyboard and computer and keeps programmed macros saved for use

between different keyboards and computers

2. Design
2.1 Block Diagram
We will have the USB 2.0 provide power to a voltage regulator that will provide 3.3V to the
microcontroller and maintain 5V for the LED and switch. The controller will provide information
through an interrupt for the LCD to display. This interrupt will also go to the device and program
to a key if the switch is activated.

4

Figure 1​: Block Diagram

2.2 Physical Design
The physical design will be created through a 3D printer. Its design is standard, acting
as a box that holds all the components in place. There while be two holes to present the
switch and LCD display while the PCB will be located within the the empty box casing.
There will also be the two USB ports where one will obtain an input from the keyboard
and the other will act as an output for the computer.

 Figure 2​: Physical Design and Dimensions of product

5

2.3 Hardware Design
2.3.1 Power System
A power supply is needed in order to provide the power for all the components in the circuit. We
decided to use the USB 2.0 power supply from the keyboard, which can benefit the user by
having the power supply built in with the keyboard and not consistently purchase batteries. We
will also utilize voltage regulators in order to satisfy the power requirements for the components
that require power and provide safety for both the user and the components of the circuit.

2.3.1.1 USB 2.0 Power Supply
A standard USB 2.0 will provide enough power for the entire device. The USB 2.0 is capable of
providing a regulated standard of 5VDC to the keyboard [6] in which 3.3V is needed in order to
power the microcontroller, driver, and flash memory and 5V are needed in order to provide
power for the LCD display user interface.

2.3.1.2 Voltage Regulator
 ​Input​: 5V power from the USB 2.0
 ​Output​: 3.3V power for the microcontroller, driver, and flash memory. 5V power for the
 LCD display user interface.

The circuit is made of an LM317 adjustable voltage regulator. The purpose of this voltage
regulator is to take in the voltage input and produce a limited voltage output for the rest of the
circuit components such as the microcontroller and LCD display. The regulator has a range of
input voltage and a maximum output current of 1.5A. The two resistors are for adjusting the
output voltage. This is done by having a value for one resistor and adjust the value for the other
resistor in order to control the output voltage. The capacitor filters out AC noise, while the other
capacitor improves ripple rejection. The schematic and printed circuit of the voltage regulator is
provided below. [8]

6

Figure 3​: The schematic of the voltage regulator where R2 is 390Ω for a 3.3V regulator
and 720Ω for a 5V regulator.

2.3.1.3 Voltage Divider
The voltage divider is two resistors connected in series, this produces a fraction of the voltage
supplied by the USB 2.0 which would be too much for the microcontroller and flash memory. We
also need it to provide a reference for the LCD applied at pin 3. This part of the LCD needs a
voltage of 0.5V in which we create a voltage divider using 9.1 kOhms and 1kOhms.

2.3.2 Microcontroller
Input:​ Keypad signal, 3.3V power
Output:​ Keystrokes pattern for programmable keys

We plan to use the PIC18F2550 microchip as they have Full Speed USB 2.0 (12Mbit/s)
interface that is required to communicate with the keyboard and computer. As each chip only
contain one USB interface we have decided to use 2 PIC18F2550 in a Master/Slave
configuration to communicate between our 2 devices. The 256 bytes of programmable storage
space on each chip was also another factor in our decision as the we need to be able to store

7

the macros in non-volatile memory. Figure 4 below shows the the circuit diagram for the 2 chips
and includes their connection to other components such as the LCD display, Set MAcro button
and USB ports.

Figure 4​: Microcontroller Circuit Schematic

2.3.3 User Interface
2.3.3.1 LCD Display (NHD-0116DZ-FL-YBW)
Input​: Key interrupts from the microcontroller and 5V from the power supply
Output​: Key interrupt pattern on the display

We wish to use this LCD in order to provide all the characters of the keyboard when we utilize
each key. An example would be if we were to program a single key to act as control-alt-delete
then the LCD will display this combination when the key is pressed. It will allow the user to know
the add on is functioning and that the programmable key is being correctly implemented. We are
implementing this through a 1 line 16 character LCD display. [7]

2.3.3.2 Program Switch
Input​: Key interrupt from microcontroller and 5V power supply
Output​: Key interrupt pattern to provide to the LCD and programmable key

8

This switch will send the signal to our microcontroller to program a key. The switch is pressed
once so the combination of keys pressed will be recorded and then it will be pressed twice to
select the key that will keep this macros, and finally pressed again to end the programming.

Figure 5​: LCD Display Schematic

3 Calculations & Plots
3.1: Voltage Regulator LM317
The output voltage of LM317 is measured as [8]

 ​Eq.1out V ref (1) adjR2V = + R1

R2 + I

In this case Vout is the voltage output once the voltage has gone through the regulator and has
been properly divided to provide the desired voltage. Vin is the input voltage from the USB 2.0
power supply. Vref is the voltage that is between the output and adjustments with a value of
1.25V. Iadj is meant to stay minimal in order for the line and load to stay constant. However,
because the input current will be small enough, it will not effect the results. We assigned a value
of 240 ohms for R1 and use the desired output voltage in order to determine the value for R2.
The equation below allows us to figure out what value we want for R2.

9

In one instance we want an output voltage of 3.3V for the microcontroller and flash memory, this
leads to the following value for R2 needed for the voltage regulator.

out 1.25(1)V = + R2
240

out 1.25 V = + 240
1.25R2

out 1.25 V = + R2
192

out .25 V − 1 = R2
192

 ​ Eq.22 92V out 240R = 1 −

2 92(3.3) 40 R = 1 − 2
2 633.6 40 396.6ΩR = − 2 =

We use this same set up in order to find the resistance of the 5V output.

2 192(5) 240R = −
2 960 240 720ΩR = − =

3.2: Voltage Divider

When using the voltage regulator we need to apply a voltage divider in order to limit the voltage
input and produce the necessary voltage output.

 ​ ​Eq.3V in
V out = Rdown

Rup+Rdown

Rdown
Rup+Rdown = V in

V out

 ​Eq.4
Rup
Rdown = V out

V in−V out

Vin is the critical voltage level and Vout is half the Vout we want which is 1.65.

.24Rup

Rdown = 1.65
7−1.65 = 3

3.3 Plots

Below is a plot of the 3.3 regulator where the regulator will make the output voltage reach 3.3
when it is at a 5V input. If it exceeds a 5V input it will still maintain a 3.3V output.

10

Figure 6​: Plot of the 3.3 voltage regulator activity when it surpassed 5V it should level out to

3.3V

Below is a plot of the 5V regulator where the regulator will make the output voltage reach 5V
when it is at a 5V input. If it exceeds a 5V input it will still maintain a 5V output.

Figure 7​: Plot of the 5V voltage regulator showing that when the input surpassed 5V it should

maintain 5V output.
3.4 Software Design

The Figure 8 below illustrates the basic control logic the user will interface with when
programming their own hardware macros. The detailed software control logic of the the
microcontrollers are shown in the figures below.

11

 Figure 8:​ User Control Flow of Setting a Macro

The Master Microcontroller takes on the role of storing and recognizing the appropriate
scan-code associated with the the macro keys and providing the data that produces the
characters on the LCD. It is also responsible for forwarding any relevant Keyboard output to the
Slave Microcontroller. Figure 9 illustrates the control logic of the Master Microprocessor during
normal operation, while Figures 10, 11 and 12 describe the control flow when an interrupt is
generated from the Keyboard, Slave Microprocessor or Set Macro Button respectively. These
interrupts are expected to be asynchronous in initiation, they execute atomically with respect the
the control flow during normal operation.

12

Figure 9:​ Control Flow of Master Microprocessor during normal operation

13

Figure 10:​ Control Flow of Master Microprocessor when interrupt received from Keyboard USB
port

14

Figure 11:​ Control Flow of Master Microprocessor when communication received from Slave
Microprocessor

Figure 12:​ Control Flow of Master Microprocessor when Set Macro Button pressed

15

The Slave Microcontroller takes on the roles of storing and outputting the array of scan-codes
associated with each of the macro keys to the computer. It is also responsible for managing
some control booleans that effect the Master Microcontroller’s operation. Figure 12 illustrates
the control logic of the Slave Microprocessor during normal operation, while Figure 13 describes
the control flow communication received from the Master Microcontroller.

Figure 13​: Control Flow of Master Microprocessor during normal operation

Figure 14: ​Control Flow of Master Microprocessor when communication received from Slave
Microprocessor

16

3.5 Tolerance Analysis

The core component of this project that will pose limitations to this project are the data storage
capabilities of the the microprocessor that we work with and the latency caused by the data
manipulation that our device performs to the keyboard output that enables the usage of the
hardware programmable keys. Each of these limitations have arose from our choice of
hardware components. Specifically the limitations of the PIC18f2550 microprocessor that
implements the core control logic of our device. In the following sections we will further discuss
these limitations and the tolerance ranges that we have chosen to ensure that our device will be
able to successfully function .

Data Storage

Due to the limiting nature of the microprocessors we are using, we have a limit in the space
available for us to use. Looking at the Data Sheet we see that the PIC18F2550 microprocessor
boasts 2,048 Bytes of RAM. However, we cannot guarantee a secure supply of power
throughout the devices operation; as our device is not powered by an internal powers source,
but rather relies on the power drawn by the USB port. Therefore, since this is volatile memory, it
is not an effective measure of the space we have available to store our macros. Further, in order
to have the user’s set macros remain even after the device is unplugged, non-volatile memory
will need to be employed. Another consideration to note, is that while the PIC18F2550
microprocessor also contains a large amount of non-volatile memory, the majority of it is
allocated towards Program Memory and will not be usable for us to store scan-codes. Upon
further reading of the Datasheet informs us that the PIC18F2550 microprocessor has 256 Bytes
allocated for data storage.

Our next step is to calculate the estimated amount of storage space required for the average
macro. As each macro can be of different length this is a variable amount. It is also important to
understand how the space is being used between the two microprocessors that comprise our
control system. Analysing the flow charts we discover that while the Master Microprocessor
stores the scan code for the macro key, it is the Slave Microprocessor that stores all of the scan
codes that are to be outputted to the PC when the macro is initiated. As macros are generally
composed of multiple key presses, it is the data storage space available in the Slave
Microprocessor that becomes the major bottleneck of our project.

Scan-codes are 1 to 3 byte codes that are outputted by the keyboard to the PC. However, the
USB HID simplifies this to uniform 1 byte scan codes. It is also important to consider that
pressing a key down and releasing it generates two separate scan codes, and while this is
possible to get the intended effect of your macro by simply outputting the the key down scan
codes, it can cause unintended consequences if the PC thinks you are holding down the keys in
your macro. Further, we estimate the average macro created by our design will contain 3 distinct
key presses, which totals in 6 scancodes per macro.

17

 256 Bytes / (1Byte*6) = 42.67 ​ Eq. 5

As shown in the above calculation we should then on average be able to store 42 different
macros on our device. This model however does not take into account any of the overheads
associated with the Macro objects we are storing in memory. We would need to store pointers to
the beginning of each of these objects. Furthermore, there needs to be a way for the program to
tell where the list of scan codes for each of these macro ends. The easiest way of which would
be to null terminate the Scan-Code Objects. This would add an additional 2 bytes per macro as
a bare minimum storage requirement.

 256 Bytes / (1Byte*6+2Bytes) = 32 ​Eq. 6

Therefore, our final analysis results in us having a maximum of 32 programmable macros in our
device. It should be noted however that the real number would be smaller in practice. There is
also a concern of buffer overflow if the user creates macros much larger than our expected
bounds. Therefore we have decided to limit the macro count to 10 and the number of keystrokes
in the macro to 3 to ensure that in no circumstance do we extent beyond our available space

Latency

The key to understanding the latency restriction is that we must compare the operating clock
cycles of our hardware with the fastest output load possible from the keyboard. The key factor to
consider here is the polling rate of the keyboard. That is the number of times in a second that
the computer checks for a new input from the keyboard. This value can vary greatly, while
standard keyboards tend to have a polling rate of 125Hz, faster gaming keyboards can have up
to 1000Hz polling rate.

The next key element is that we need to compare this polling rate to the clock cycle of the
microprocessors. The clock input of our microcontrollers are 20 MHz. However, since we are
setting the microcontroller to the HS PLL mode in order to be USB compliant, the actual clock
cycle that the microcontrollers run at is 24MHz.

24 Mhz / 1000Hz = 24000 cycles ​Eq. 7

This means that 24000 instructions can be run on the microcontroller between the fastest
possible 2 keystrokes. While this number seems a lot, it is important to consider that even the
most basic assignment line of embedded C code can require multiple instructions and clock
cycles to be serviced. This means it is integral that we test the runtime of our code to ensure
that it does not take more than 2400 instructions. However, it is important to note that this is an
extremely conservative restriction we are placing on ourselves due to some keyboards may
have a 1000 Hz poll rate that is far too high of a typing speed to be seen in practical use.

18

4. Requirement and Verification
Table: The requirement and verification for the Power Supply

Requirement Verification Point

Voltage Regulator 6

The voltage across the output
and ground for LM317-1 must
be 3.3V with a max error of
5%.

1a. Connect USB 2.0 to the
input of the regulator to
provide a voltage of roughly
5V.
1b. Connect a Digit
Multimeter to the output of
the circuit and ground in
order to measure the voltage.
1c. Verify that output is within
+/- 5% error.

2

The voltage must remain
stable during the power
supply from the USB 2.0.

2a. Have power supply
connected to provide power.
2b. Use Digit Multimeter to
measure output as the power
supply output is altered
above 5V.
2c. Verify that output is within
+/- 5% error.

2

The voltage across the output
and ground for LM317-2 must
be 5V with max error of 5%

1a. Connect USB 2.0 to the
input of the regulator to
provide a voltage of roughly
5V.
1b. Connect a Digit
Multimeter to the output of
the circuit and ground in
order to measure the voltage
1c. Verify that output is within
+/- 5% error.

2

Requirement Verification Point

USB 2.0 Power Supply 2

The voltage across the output
and ground must be 5V with
max error of 5%

1a. Connect output of the
USB 2.0 power supply to a
Digit Multimeter and measure
the voltage.

2

19

1b. Verify that output is within
+/- 5% error.

Requirement Verification Point

LED Power 2

The voltage provided to pin
15, LED+ must read 5V while
pin 16, LED- reads 0V
providing the correct power
and ground for the LED
display with max error of 5%.

1a. Connect the input to pin
15 and ground to pin 16 of
the LED chip to a Digit
Multimeter and measure the
voltage.
2a. Verify that output is
withint +/- 5% error.

2

Requirement Verification Point

LED Display 10

Displays a coded string of
characters correctly

1a. Utilize the keyboard to
send a bit string to the LCD
through the microcontroller.
1b. The LCD has the correct
string of characters on the
display board.
1c. Verify that all bits of the
string are able to produce a
character

10

Requirement Verification Point

Microprocessor 28

Master microcontroller
correctly receive scancodes
and recognises when macro
key has been pressed

1a. By outputting to the LCD
display when a macro key is
pressed on the keyboard we
can effectively test whether
the Master microcontroller is
recognising the scan codes
correctly.

6

20

Master microcontroller
correctly outputs to LCD
display

1a. Run tests to have the
Master microcontroller output
a predetermined output to the
LCD display and examine if
the expected outputs are
correctly displayed. This
verifies the code for
communication between the
microcontroller and the LCD
display to be correct

5

Have correctly implemented
Inter-integrated Circuit (I2C)
communication protocol
between master and slave
microcontrollers

1a. Have an oscilloscope
analyse the waveform to see
if the communication protocol
is being correctly followed

5

Have the master and slave
microcontrollers correctly
store the EEPROM from the
scan codes for the macro key
and the macro.

1a. Connect the
microprocessor via USB to a
computer and run a test code
that outputs the data stored in
the EEPROM of the chips

6

Have the Slave
microcontroller only send
valid scan-codes to the
computer

1a. Have a computer side
code that prints out the
scancode being received by
the computer and iterate
through each of the key
presses on the keyboard to
ensure that the correct scan
code is being outputted as
pet USB specification.

6

Requirement Verification Point

Set Macro Button 2

Have the Set Macro Button
correctly register button
presses, with less than 2% of
false positives or unwanted
double click being registered

1a. Connect Button output to
to multimeter to see if the
presses are registered
correctly, collect the
frequency data on the false
positives to ensure that the

2

21

requirements are being met

5. Cost Analysis and Schedule
5.1 Cost Analysis
5.1.1 Parts

Part Name Part Number Unit Cost Quantity Total

Microcontroller MSP-EXP430F5
529LP

$13.49 2 $26.98

Voltage
Regulator

LM317 $0.98 4 $3.92

Keyboard Logitech K360 $24.95 1 $24.95

Toggle Switch $2.90 1 $2.90

LED Display NHD-0116DZ-F
L_YBW

$13.90 2 $27.80

3D Printer
Usage

Outside provider $10 1 $10

 $96.55

5.1.2 Labor

The national average salary is roughly around $67,899 for the year. [9] By performing the
calculation

 67,899 x x x ​ Eq. 8year

dollars
year

12 months
month

4 weeks
week

40 hours

we can gather that the average weekly wage is around 35 dollars for the average work week.
Using this information we can gather the labor cost for each partner estimating roughly 20 hours
per week worth of work for the 13 weeks since partners have been assigned.

 20 x 13 weeks x 35 x 2.5 = $22750 per person ​ Eq.9week
hours

hour
dollars

22

5.1.3 Grand Total of Labor

Name Hours Invested Hourly Rate Total Cost

Nigel H. 260 $35 $22750

Jeevitesh J. 260 $35 $22750

3D Printer Provider 2 $8.25 $16.50

Total 340 $45,516.5

5.2 Schedule

Week Nigel Haran Jeevitesh Juneja

2/5 Finalize Project Proposal

Review Project Proposal

2/12 Research and select voltage regulator
Research and select keyboard
Research and select LCD display

Research and select microcontroller

2/19 Finalize Design Document
Apply extra hardware to project

Review Design Document
Prepare for design review

2/25 Study Datasheets
Purchase all hardware and parts

Begin programming microcontroller

3/4 Design PCB
Build prototype on breadboard

Test microcontroller

3/11 Put in the order for the PCB
Debug prototype

Interface microcontroller with
keyboard
Interface microcontroller with LCD

3/18 Work on Final Report
Request 3D print of casing

Run tests

23

3/25 Set up PCB Run tests on the project

4/1 Test and debug power measurements Test and Debug microcontroller

4/8 Prepare for mock demo

Optimize all parts

4/15 Prepare Presentation Prepare Demo

4/22 Finalize Paper Prepare Presentation

4/29 Turn in Final Paper
Lab Checkout

Proofread Final Paper

24

6. Ethics And Safety:

In general there is very little health and safety risks. Standard safety issues include the risk of
developing arthritis and discomfort during the use of the keyboard. [3] However, in order to
prevent any safety risks during the development of the keyboard, we must make sure to follow
the safety guidelines that were addressed during the lab safety tests. We must also respect the
designs of previous keyboards and give credit where it is due. We must also prevent any
misuse of our product and condone the use of our product to commit unethical actions. Another
possible ethical issue to address is to accept when an area of knowledge is outside our area of
expertise and to obtain help through research and other outside resources. [1]

In order to comply with the first established policy of the IEEE Code of Ethics we shall make
sure to establish materials like a voltage regulator in order to limit the amount of power flowing
through the device and not put the user at risk. We will also make sure to implement the
standard safety principles for the safety of the consumer and workers such as no exposed
wires, materials that are not toxic, and insulators that will prevent shocks. To comply with the
second law of the IEEE code of ethics we will establish all interests and address when there is a
conflict between them. If there is a conflict of interests, we will try to resolve the conflict on our
own. If the conflict can not be resolved, we will bring an outside party to give their input. The
third code of ethics can be addressed by researching concepts that are confusing until and
understanding is developed. [1]

The fourth code will be addressed by not performing any acts of bribery or to accept any forms
of bribery. It shall also be addressed by reporting any case of bribery that occurs during the
development process. [1] The sixth code of ethics will be addressed by performing what we can
do with our knowledge. If we have an issue during the development, we will seek help from the
TA and course staff when facing an issue that cannot be solved by us alone. The seventh code
of ethics will be addressed by taking all criticism from the assigned TA, course staff, and fellow
peers. We will work together in order to resolve any issue that is addressed by outside criticism.
The ninth code of ethics will be resolved by following the safety principles that were addressed
during our safety test and to follow all the principles established during the safety training
portion of the course. The tenth code of ethics will be addressed by offering assistance and
guidance to fellow students and partners in order to provide improvement in both the product
and the individual behind it. [1]

We will honor the 1.5 ACM code of ethics by looking into the patent of any design aspect we are
considering to use and make sure not to wrongfully use something that will break copyrights.
We will honor the 1.6 ACM code of ethics by giving credit to all design aspects that have already
existed such as the general design of keyboards and the concept of a programmable keyboard.
We will honor the 2.1 ACM code by not using materials that cut in costs or quality of the product.

25

We will make sure to use materials that are for the best of our design and not place peers or
consumers at risk. [2] Finally we will address the risk of privacy by clearly placing the uses of the
product so that it cannot be used as a keylogger. We will address how this is a breach of the
terms & agreements of the product securing the safety of the user and providing proper
punishment for the unethical uses of the product.

26

Citations
[1]Ieee.org, "IEEE IEEE Code of Ethics", 2018. [Online] Available:
http://www.ieee.org/about/corporate/governance/p7-8.html​. Accessed: 6 Feb 2018.

[2]acm.org, “ACM Code of Ethics and Professional Conduct,” 2018. Available:
https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct#sect2​.
Accessed 6 Feb 2018

[3]workplaceohs.com, “Computers,” 2018. [Online] Available:
http://workplaceohs.com.au/hazards/office-safety/computers​ . Accessed: 6 Feb 2018.

[4]logitechg.com, “G810 Orion Spectrum,” [Online] Available:
https://www.logitechg.com/en-us/product/g810-orion-spectrum-rgb-gaming-keyboard​ . Accessed
10 Feb 2018.

[5]logickeyboard.com, “Avid Media Composer PC Backlit Astra Keyboard,” [Online] Available:
http://logickeyboard.com/shop/avid-media-composer-astra-backlit-pc-keyboard-3417p.html​ .
Accessed: 10 Feb 2018.

[6]superuser.com, “What is the power output of a USB port,” [Online] Available:
https://superuser.com/questions/690074/what-is-the-power-output-of-a-usb-port​ . Accessed: 6
Feb 2018.

[7]mouser.com, “NHD-0116DZ-FL-YBW,” [Online] Available:
https://www.mouser.com/ds/2/291/NHD-0116DZ-FL-YBW-34847.pdf​ . Accessed: 18 Feb 2018

[8]ti.com, “LM317 - 3 Terminal Adjustable Regulator,” [Online] Available:
http://www.ti.com/lit/ds/symlink/lm317.pdf​ . Accessed: 13 Feb 2018

[9] ece.illinois.edu, “Salary Averages,” [Online], Available:
https://ece.illinois.edu/admissions/why-ece/salary-averages.asp​ . Accessed: 23 Feb 2018

[10] microchip.com, “PIC18F2550,” [Online] Available:
https://www.microchip.com/wwwproducts/en/PIC18F2550​. Accessed: 11 Feb 2018

[11] microchip.com, “USB MCUs & dsPIC,” [Online] Available:
http://www.microchip.com/design-centers/usb/usb-pic-reg-mcus-dspic-reg-dscs​ . Accessed: 11
Feb 2018

27

http://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct#sect2
http://workplaceohs.com.au/hazards/office-safety/computers
https://www.logitechg.com/en-us/product/g810-orion-spectrum-rgb-gaming-keyboard
http://logickeyboard.com/shop/avid-media-composer-astra-backlit-pc-keyboard-3417p.html
https://superuser.com/questions/690074/what-is-the-power-output-of-a-usb-port
https://www.mouser.com/ds/2/291/NHD-0116DZ-FL-YBW-34847.pdf
http://www.ti.com/lit/ds/symlink/lm317.pdf
https://ece.illinois.edu/admissions/why-ece/salary-averages.asp
https://www.microchip.com/wwwproducts/en/PIC18F2550
http://www.microchip.com/design-centers/usb/usb-pic-reg-mcus-dspic-reg-dscs

[12] hades.mech.northwestern.edu, “SPI Communication between PICs,” [Online] Available:
http://hades.mech.northwestern.edu/index.php/SPI_communication_between_PICs
Accessed: 12 Feb 2018

[13] microchip.com, “PIC18F2455/2550/4455/4550 Data Sheet,” [Online] Available/:
http://ww1.microchip.com/downloads/en/DeviceDoc/39632e.pdf​ Accessed: 11 Feb 2018

[14] picturial.net, “Learn Pic Microcontroller Programming,” [Online] Available:
http://www.pictutorial.net/2016/09/usb-hid-bootloder-for-pic18f-what-is.html​ Accessed: 16 Feb
2018

28

http://hades.mech.northwestern.edu/index.php/SPI_communication_between_PICs
http://ww1.microchip.com/downloads/en/DeviceDoc/39632e.pdf
http://www.pictutorial.net/2016/09/usb-hid-bootloder-for-pic18f-what-is.html

