

Real-Time Sound Visualization

ECE 445 Design Document

Qian Chen qchen46@illinois.edu

Lin Le linle2@illinois.edu

Xinyue Yu xyu69@illinois.edu

TEAM 43

TA: Dongwei Shi

2/22/2018

2

Contents

1. Introduction………..3

1.1 Objective ………3

1.2 Background ………………………………………………………………………………………………………..…………3

1.3 High-level requirement………………………………………………………………………………………………….4

2. Design ……..4

2.1 Function overview……4

2.2 Block Design and verification ………………………………………………………………………………………..5

2.2.1 Sound Input, Video Output …………………………………………………………………………….…5

2.2.2 Controller……………………………………………………………………………………………………….…7

2.2.3 Other………9

2.2.4 Power Supply…………………………………………………………………………………………………….9

2.3 Circuit……..11

2.3.1 Circuit Schematics…………………………………………………………………………………………….11

2.3.2 Internal circuit and block diagram of FPGA………………………………………………………14

2.4 Algorithm……16

2.4.1 D/A conversion and FFT…………………………………………………………………………………..16

2.4.2 Data transmission between FPGA and MCU…………………………………………………….17

2.5 Tolerance Analysis………………………………………………………………………………………………………18

2.5.1 Cut-off frequency…………………………………………………………………………………………….18

2.5.2 Accuracy of pitch detection……………………………………………………………………………..19

3. Cost and schedule………..19

3.1 Cost……….......20

3.1.1 Labor…….20

3.1.2 Parts……..20

3.2 Schedule……...……….21

4. Ethics and Safety………………………………………………………………………………………………….…………….22

5. Reference ……..……………..23

3

I. Introduction
1.1 Objective

Have you ever experienced the situation that you want to immediately get the transcription

when you listen to piece of music that you are enthusiastic about? The solution that we design

for this problem is to create a small and affordable device that listens to a musical instrument

or vocal sound and recognizes the notes played with LED effect. These notes can then be sent

to a synthesizer in the common MIDI format. This allows people who’s not skilled at music to

record the music that they want to store as their compositions into musical notes or for those

people who do not have music score but want to play piece of music that they heard.

Figure 1. Real-time Sound Visualization

1.2 Background

Nowadays, there are thousands of mobile phone application have the function of pitch

detection to recognize pitch like Vocal Pitch Monitor in the Google Play, Pitch Tuner or Tenuto

in the Apple Store [1]. But most of pitch detection application do not have the transcription

option to show on and few that has the feature is really expensive to purchase in the apple

store. Hence it is interesting to have a hardware version to combine all the fantastic features

together and make it portable and affordable for musicians or music lovers with a cheap price.

4

This project creates a small embedded monophonic music transcription system that can

transcribe one note at a time when there is one sound. The next step is to store the melody

into designed memory chip and mimic piano sound for replaying. There will be LED effect

accompanied with piano sound when it is in replay mode. To be specific, a pitch detector in

hardware will be used to detect sound in real time at 44k sampling rate. A FFT analysis will be

used inside our microcontroller. The detected pitch will be stored into memory for further

replaying and displaying. Once the musical notes has been detected, it will automatically

display on a VGA display. The musical notes will flow to the right side when one music note is

displayed.

1.3 High-level Requirement

● It should detect the correct pitch for notes produced by vocal or other instruments, and

display the correct note on display.

● There should be no noticeable delay between incoming audio signal and digital output.

The delay should be no larger than 250 ms (¼ second).

● The MCU drives a series of LEDs as a volume unit (VU) meter, which gives the intensity

of input sound, like those on the recorder or CD player.

II. Design
2.1.1 function overview

The ultimate goal is to detect which note is playing. To achieve the goal of performing pitch

detection, a frequency spectrum analyzation is mandatory. The method is to perform Fast

Fourier Transform(FFT) on the sound data collected. To do FFT, first a microphone is connected

to the MCU. The microphone translates sound energy to electric energy. Then MCU sample

data and digitize all the data and store in memory. Therefore, an ARM based MCU is chosen to

do all the calculation. The chosen MCU, has built-in DSP module and capable of utilizing DSP

module with DSP library provided by supplier.

All the component will be mounted on a PCB (printed circuit board) except display and light

effect LEDs. The MCU will output the detected pitch, then the FPGA will read the data from

MCU pins and decode the data and decide what should be displayed on the VGA display. The

5

FPGA is also responsible to control light effect LEDs. Which works as a volume unit meter;

therefore, the use can easily notice if the volume of input sound is too low or too high.

2.1.2 Block Diagram

Figure 2. Block Diagram

2.2 Block Design

2.2.1 Sound Input and Output, Video Output

Microphone

The microphone we be connected to the MCU with wires. The microphone have to be sensitive

for the A/D module on MCU to read the correct signal. The A/D module in MCU takes voltage

6

between 0v to 3.3v; therefore, the output of the microphone module must be between 0 to

3.3v.

Requirement Verification

1. Microphone module outputs voltage
between 0 to 3.3v.

2. Microphone is sensitive to input sound.
The microphone must have a output for
inputs sound of intensity 40dB. The
output of microphone must have a
signal to noise ratio of at least 10db.

1. Connect the output of microphone
module directly to the oscilloscope,
read the output voltage, and ensure is
output is between 0 to 3.3v.

2. Connect the microphone to MCU
though the GPIO. Use MCU to read data
from microphone.

a. Record without any input sound,
record data as noise.

b. Record input sound, record data
as noise plus signal. The input
sound is at 50 db. Calculate the
SNR. The SNR should be at least
10 db.

Table 1.

Status LEDs

The status LEDs is controlled by the Microcontroller Unit and will display to the user if the MCU

is working properly and whether the microphone and speaker is on or off.

Requirement Verification

The LED has noticeable light at input voltage
3.3v. Which is provided FPGA and MCU. One
of the LED should be red, one of the led
should be green.

Assemble the FPGA on PCB, connect all the
required capacitors and resistors. Hard code
FPGA, set the output GPIO pins to logic 1, to
control LED blinking.

Table 2.

VGA port

The VGA port is driven by a VGA DAC. The VGA DAC used is ADV7123 by ANALOG DEVICES. The

DAC connect to FPGA by GPIO pins of FPGA. Then the pinout will be assigned through IDE. FPGA

controls what to display on the VGA display. The MCU is dedicated on performing FFT

algorithm, therefore, FPGA is responsible to display result on a VGA display.

Requirement Verification

7

Video signal should output with VGA at
resolution 640 * 480.

Assemble the FPGA on PCB, connect all the
required capacitors and resistors. Connect the
VGA DAC to FPGA. Hardcoding testing image in
to FPGA, test the output of VGA port. Connect
a display through VGA port. The display should
have test image on it.

Table 3.

2.2.2 Controller

MCU

The project uses a STM32F207 MCU [2], because we need a powerful MCU to perform FFT in

real-time. The current MCU is ARM Cortex M3 based, and capable of doing DSP instruction. The

MCU is also responsible to do A/D conversion, the MCU has build-in A/D and D/A convection

module. The MCU computation power should be sufficient. Based on our research an even a

smaller M2 based MCU can perform FFT.

MCU will collect data at sampling rate 44.1 kHz from A/D port and write data into memory and

perform FFT. Before FFT decimation is required to reduce the amount of data. As learned from

digital signal processing, decimation will cause aliasing. Thus, a Low-Pass-Filter is needed before

performing FFT. A simple averaging should be sufficient. The melody store in memory of MCU

will be played back through the build in D/A module.

Requirement Verification

1. Sampling sound data with A/D module
at sampling frequency 44.1kHz.

2. Perform pitch detection, the delay of
result is less than 250 ms, and the rate
of sample possessed is more than 10k
sample/sec.

3. Playback stored sound data with a
speaker.

1. Assemble the MCU on PCB, connect
all the required capacitors and
resistors. Connect the Wave
generator to MCU through audio jack.
MCU read data with its A/D module.
Set the wave generator at 22kHz.
Output the data through serial port,
performing FFT with matlab. Ensure
the highest peak is at 22kHz.

2. Connect the GPIO pins of MCU to

8

wave generator. Read input data from
wave generator. Perform the pitch
detection algorithm on the collected
data. Communicate with MCU by
serial port to ensure the result of
pitch detection is correct. Record the
time takes to perform pitch detection
with build in time lib. Ensure the time
is less than 250 millisecond.

3. Record music with microphone. Store
the data on memory. Playback the
stored music. Ensure the music can be
recognized by human.

Table 4.

FPGA

One of important module in our control unit is FPGA. One of the important roles FPGA played in

our system is to work as a VGA display controller. The MCU is dedicated on performing FFT

algorithm, therefore, FPGA is responsible to display result on a desktop monitor though VGA

port. Moreover, FPGA will also responsible to control LEDs. The LEDs display the input sound

intensity as a VU meter. The FPGA considered is Altera Cyclone III EP3CE144E22.

Requirement Verification

1. Output the correct video and display
it on VGA display.

2. Read the data from MCU, decode the
information.

3. Blinks all the light effect LEDs
correctly.

1.
a. Assemble the FPGA on PCB,

connect all the required
capacitors and resistors. The
FPGA require its dedicated
Clock input. Check and make
sure the FPGA is running at a
desired clock speed by a
oscilloscope

b. Hard code a test image by
quartus II. Upload the
synthesised file. Ensure the
output VGA signal is 640 * 480
at 60Hz frame per second

9

2. Connect the GPIO pins of FPGA to
GPIO pins of MCU. Read data to the
GPIO pins by MCU. Read data from
pins by FPGA. Then display the data
through LEDs. Ensure the LED
connected to pins of FPGA can be
controlled with MCU through FPGA.

3. The LEDs are not directly driven by
FPGA, in that case the power
consumption and current is too big for
FPGA to handle. The pin of FPGA is
connected to a LED driver, then the
LED driver drives LED. Ensure the LEDs
blinks, and the intensity of LEDs are
easily recognized by human.

 Table 5.

2.2.3 Other

IDE

Eclipse with GCC, STM32 Cube as an IDE for STM32 MCU. Write program with Eclipse, then

compile the code with GCC and STM32 Cube. Upload the compiled program.

Quartus II for FPGA. Quartus II is the official IDE realised by altera. The simulation of FPGA will

be done by modelsim.

Requirement Verification

1. Compiles code in C for MCU.

2. Synthesis systemverilog for FPGA.

1. Upload compiled program to STM32,
communicate through serial port.
Make sure the status LED of STM32
blinks.

2. Upload synthesised file to FPGA,
control LED and VGA. Read data from
STM32, make sure the status LED of
FPGA blinks.

Table 6.

10

2.2.4 Power Supply

Since there are a lot of component, a robust power supply circuit will be implement for this

project. Power supply consists of several buck converter DC-DC voltage regulators, which will

provide different voltage needed by different component. All the power supplies take 5 volt DC

as input. The LEDs are going to be power-hungry than the other component. The power supply

circuit is separated from the rest. FPGA has a Maximum input voltage of 3.5V. MCU requires 1.7

to 3.5V as power input. The voltage regulator used is LP3964 by texas instrument, the voltage

regulator is configabale, capable of outputting voltage between 1.2v to 5v

Requirement Verification

1. The power supply need to have
output of 1.2v +/- 5%. 3.3V +/- 5%, 5V
+/- 5%. The 1.2 volt power supply has
the maximum output current at 0 to
500 mA. The 2.5v has a maximum
current output of 1A. The 3.3v has a
current output up to 800 mA. The 2.5v
power supply has a maximum current
output of 800mA.

2. Maintain the temperature under
100C. The maximum operating
temperature for voltage regulator.

1. Mount all components of power
supply to PCB. Connect all the
required resistors and capacitors.
Making sure the output reading is
correct. Connect the output on the
PCB to resistors. Read voltage across
output and output current with
multimeter. Ensure the power
supplies meat all the requirements.

2. Using infrared thermometer to read
temperature. The temperature
underload should be under 100 C.
Otherwise add heatsink to the voltage
regulator.

Table 7.

11

2.3.1 Circuit Schematics

Figure 4. Schematic of FPGA

12

Figure 5. DAC for VGA video output

13

Figure 6. Three voltage regulators. One is 1.2 volt, one is 2.5 volt, one is 3.3 volt.

14

Figure 7. Bank A of MCU, the microphone is connect to the ADC port on MCU. The J-link for

uploading is connected to MCU bank A. The BUS between FPGA and MCU is connected to bank

A.

15

Figure 8. The Bank B of MCU.

Figure 9. Back C of MCU

2.3.2 Internal circuit and block diagram of FPGA

Figure 10. Block diagram of note drawing module in side FPGA. The controller decode the pitch

code sent by MCU, and draw the corresponding node on screen.

16

Figure 11. This module aims to control the timing of the VGA port, in which both the monitor

vertical and horizontal synchronization signals are generated. Moreover, the 25 MHZ VGA_Clk

signal is used as the input to this module, which aims to provide a timing standard for VGA

output signals.

2.4 Algorithm

The software information in the project divides into two parts. The D/A and A/D conversion

(Fg.12) below handle with the pitch detection inside the microcontroller unit. The algorithm will

be briefly introduced in the following module. The Data Transmission between FPGA and

Display part (Fg.13) deal with displaying final result as we expected like a flowing transcription.

2.4.1 D/A Conversion and FFT

The algorithm for pitch detection on MCU is shown below. MCU collects data from

microphone and perform pre-processing and FFT. The result of FFT will be stored in

memory. The highest peak in frequency domain will be considered as the fundamental

frequency of the input sound.

17

Figure 12. A/D D/A conversion and FFT algorithm

2.4.2 Data Transmission between FPGA to MCU

The algorithm for data transmission between FPGA and MCU is shown below. Once the

FPGA receives the signal from MCU, it will show on the display immediately and takes

corresponding effect as we expect on display and LED.

Figure 13. Data Transmission between FPGA and Display Algorithm

18

2.5 Tolerance Analysis

2.5.1 Cut-off frequency

The frequency response of filter design is a very important tolerance in this project.

Before performing the low pass filtering, attenuation of the stop band should be high

enough. Meanwhile, the cutoff frequency cannot be too low or too high, otherwise

either some information is lost or induced aliasing will make all the data unacceptable.

Therefore, we must find out the preferred cutoff frequency based on the current model.

In the current plan, the data collected by A/D converter is sampled at 44kHz, which

should be sufficient. Most common instruments do not have a first order harmonic with

a frequency exceeds 22kHz. The higher order harmonics are usually not strong. After

sampling, the data when through a decimation at down sampling rate 4:1, i.e. Only one

of four data are kept, others are discarded. In this case, U = 4

It is clear that component in frequency domain with frequency |ω| > 𝜔0/8 =

5.5𝑟𝑎𝑑 will cause aliasing. If we want to use a averaging filter as a low pass filter with

length of 8.

 𝐻[𝑛] = [1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8]

The frequency response is as plot.

19

Figure 12. Frequency response of a averaging filter of length 8

From the frequency response, the half width of the main low is smaller than pi/4.

Therefore the averaging is a good pre-downsampling filter. However, there is still some

minor problem, the magnitude sidelobe is a bit too high. The highest value of the side

lobe is at 5dB, which may reduce the SNR (signal to noise ratio).

2.5.2 Accuracy of pitch detection

The accuracy of detected pitch is important to our project. According to Wikipedia of

piano pitch frequency, “the following equation gives the frequency f of the nth key, as

shown in the table[2]:

 Eq. 1
For example, 𝐴5has frequency 880.000 Hz, and it’s next pitch is 𝐴𝐴5 whose frequency is 932.328

Hz. The tolerance of each pitch will be ±3%, that means, pitches in range from 853.836 HZ to

906.164 Hz will all be recognized as 𝐴5. Since the highest frequency after FFT will be tested as

the pitch, there is 5% error rate saved for background noise.

III. Cost and Schedule

20

3.1 Cost

3.1.1 Labor

Our development cost for this project is to be $30/hour, 15 hours/week for three people. There

are total 16 weeks for this semester and we consider committing 65% for our final project.

$30/hour * 15 hours/week* 16 weeks * 65% * 3 people = $14,040

3.1.2 Parts

Part Price

Microcontroller: ARM® 32-bit Cortex®-M7
CPU with FPU, adaptive real-time accelerator
(ART Accelerator™) and L1-cache (ebay)

$28.99

FPGA: Altera Cyclone IV EP4CE10E22 (ebay) $65

1.8’’ Color TFT LCD display with MicroSD Card
Breakout- ST7735R

$19.95

Voltage regulators. The voltage regulator is
LP3964

$5

Capacitors and resistors From lab

Audio jack, J-Link socket, J-Tag soccket $20

crystal clock oscillator $10

Total $148.98

The total cost will be the sum of labor cost and parts cost, which is $14188.98.

3.2 Schedule

Week Lin Qian Xinyue

2/18/18 Researching on PCB
design.

Research and design
display

Work on design
document

2/25/18 Continue on PCB
design, then verify

initiate the FPGA
routing protocol

Start connecting LED
with side effects

21

the design with TAs programming

3/4/18 Order PCB
Purchase functioning
testing board for
internet.

Continue FPGA
programming and
make display
visualizable

Study how to
program to display

3/11/18 Start working on
MCU programming

Begin to connect
microcontroller unit
to give simple
response on the
display

Start to use IDE and
program on display

3/18/18 Communicate with
MCU through serial
port. Read data from
microphone

Continue working on
data transmission
from microcontroller
to FPGA

Continue working on
programming

3/25/18 Start on soldering job
(if PCB arrives)

Continue working on
data transmission
from microcontroller
to FPGA and test and
debug

Find online
instrument source,
and test them. Pick
three of them

4/1/18 Testing PCB, and
component on PCB.

Begin to make “music
transcription”
moveable on the
display as we
expected

Connect the LED
when replay music.

4/8/18 Complete debugging
and testing. Finish
build job

Complete the ideal
version of our project
And fix any bugs
during testing

Wrap up the code
and test the
functionality.

4/15/18 Demo Demo Complete the ideal
version of our project

4/22/18 Working on final
paper

Working on final
paper

Fix any bugs during
testing

4/29/18 Final touch on lab
notebook

Final touch on lab
notebook

Prepare for final
Presentation

22

IV. Ethics and Safety
Since it’s a sound visualization model, there will be some music pieces and

even an entire song envolved to test the functionality. It’s necessary to follow the IEEE Code of

Ethics, #6: “to seek, accept, and offer honest criticism of technical work, to acknowledge and

correct errors, and to credit properly the contributions of others” [3]. To respect

musician’s work, music that has copyright will not be spreaded and will not be saved for

commercial purpose neither.

In order to test human sound as input, some people with different voice will be invited to

Help and we will record them sing and talk. Therefore, according to ACM code of Ethics

and Professional Conduct, #1.7: “Respect the privacy of others.” [4], we will always ask

if they are willing to share their recording with us, and if it’s good to use their recording

during our demo. If any one of them says that it’s not good to use his/her voice, we will

remove his/her recording from the memory.

The main safety concern of this project is the DC power supply. It’s mentioned in the DC Power

Electrical Safety Guidelines: “Ensure that the polarity of the DC input wiring is correct. Under

certain conditions, connections with reversed polarity might trip the primary circuit breaker or

damage the equipment.” [5] We will carefully mark the polarity before turning on the switch.

Furthermore, according to the article, What's the Difference Between AC and DC Electric

Shocks: “DC current will make a single continuous contraction of the muscles, and can cause

fibrillation of the heart at high enough levels.” [6] We will always check if the switch is turned

off before we debug our circuit. So that we won’t get injured by the power.

23

V. Reference

[1] AppCrawlr, ‘Best pitch detection apps for ios (Top 100)’, [Online]. Available:

http://appcrawlr.com/ios-apps/best-apps-pitch-detection [Accessed: 20‐ Feb‐ 2018]

[2] Wikipedia, ‘Piano Key Frequencies’, 2018, [Online]. Available:

https://en.wikipedia.org/wiki/Piano_key_frequencies [Accessed: 22- Feb‐ 2018]

[3] Open Audio, ‘Benchmarking - FFT Speed’, 2016. [Online]. Available:

http://openaudio.blogspot.com/2016/09/benchmarking-fft-speed.html [Accessed: 22‐ Feb‐

2018]

[4] Life.Augmented, ‘System Workbench for STM32: free IDE on Windows, Linux and OS X’,

2018. [Online]. Available:

http://www.st.com/en/development-tools/sw4stm32.html [Accessed: 20‐ Feb‐ 2018]

[5] IEEE, ‘IEEE Code of Ethics’, Section 7. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html [Accessed: 20‐ Feb‐ 2018]

[6] ACM, ‘ACM code of Ethics and Professional Conduct’, 1992. [Online]. Available:

https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct#sect4

[Accessed: 22‐ Feb‐ 2018]

[7] Juniper Networks, ‘DC Power Electrical Safety Guidelines’, 2015. [Online]. Available:

https://www.juniper.net/documentation/en_US/release-

independent/jsa/topics/reference/safety/dc-power-jsa-electrical-safety-guidelines.html

[Accessed: 22‐ Feb‐ 2018]

[8] Bright Hub Engineering, ‘What's the Difference Between AC and DC Electric Shocks’, 2015.

[Online]. Available: http://www.brighthubengineering.com/power-plants/89792-ac-and-dc-

shock- comparison/ [Accessed: 20‐ Feb‐ 2018]

https://www.ieee.org/about/corporate/governance/p7-8.html

24

[9] Carmine Noviello, ‘Build STM32 applications with Eclipse, GCC and STM32Cube’ 2015.

[Online]. Available:

https://www.carminenoviello.com/2015/06/04/stm32-applications-eclipse-gcc-stcube/

[Accessed: 20‐ Feb‐ 2018]

