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Introduction

Objective

After the Fukushima Daiichi didaster in after a 2011 tsunami, where robotics proved incapable of responding
in disaster scenarios massive amounts of funding has been allocated to solving the problems that prevent
robots from operating in unconstrained and unknown environments. Many teams developed different plat-
forms which have since been used in disaster response situations [1] DARPA, specifically, has a Robotics
challenge that requires robots to perform tasks that might be required in a disaster scenario that include
interacting with objects, maneuvering in uneven and unknown terrain, and even driving a car. Unfortunately
progress in the these directions have not made significant enough progress to be able to reliably use in disaster
scenarios [2]. Disaster response robots of a different kind are currently being used, however, as documented
and run by the Center for Robotic-Assisted Search and Rescue. These robots are for the most part human
operated and are limited by human restrictions and the ability to communicate with the operator. Since
these robots are not being used for heavy manipulation, their primary task is to identify humans in danger
as well as dangerous areas. In disaster scenarios, it is often the case where finding survivors is a time critical
operation given their possible medical states. Having an autonomous robotic platform that is onsite and can
immediately begin exploration of the environment would increase the overall response time dramatically. It
would reduce the time that it takes for first responders to arrive on the scene, set up their robotics systems,
and establish safety parameters for operating in the environment. If an autonomous system can do a search
and survey and present accurate information to the first responders, they can act immediately and poten-
tially safe lives.

We envision an implementation of a robotic system that uses reinforcement learning to train how best to
navigate in a maze environment while identifying the positions of survivors and performing a simple retrieval
task. This robot will learn exploration behaviors so that when placed in a new test environment, it can ex-
plore the environment without without explicit retraining on the new environment. We hope to explore
and overcome the obstacles of implementing a reinforcement algorithm on a real world platform, primarily
the amount of noise and stochasticity in the system. We will train an asynchronous n-step, e-greedy Q
learning algorithm, with an Intrinsic Curiosity Module [3] to generate reward on a simplified version of the
continuous 3-d state space. The Intrinsic Curiosity Module will help the platform to learn basic exploration
techniques so that when it is placed in a new test environment, it is not trying to learn the behvaiors from
scratch. Our hope is to extend the algorithm in future work to take in the image data as input to decide
the action, using advanced machine learning algorithms. We will set artificial constraints on the robot in
alignment with the real world maze environment that we set up for testing and training. The maze will be
a fully connected space with high contrast intersections with differently textured walls. We will develop a
differential drive robot with visual and depth sensors, that is given an occupancy grid of its environment.
It will move through the maze using a set of pre-defined action primitives to unknown survivor positions
and move a simple objects to a goal position. We would like to explore the extension of arbitrary starting
positions if there is time at the end. It will identify and classify these objects using a Single Shot Detection
algorithm [4]. Once it has identified a retrieval object, it will switch into a retrieval mode from exploration.
Using a simple centering algorithm and a distance sensor, it will move to a position to pick up the object,
after which it will return to the starting position, using information learned about the environment stage

from the exploration phase. We will set environment rewards for the agent for these retrieval tasks, as well



as for identifying specific high contrast markers placed on the walls of the maze environment to represent
areas of interest. Since we are limited in scope for this project, we wanted to develop a proof of concept that

can be exteneded in future work to a robotic platform that can operate in real building environments.

Background

In recent years, work has begun on using machine and reinforcement learning techniques to develop robotic
systems that can navigate through a simulated environment using visual and distance data, that eliminates
the need for classical navigation tasks such as localization and trajectory planning. At the 2017 NIPS
conference Pieter Abeel gave a keynote presentation about the use of meta-learning which is an algorithm
that can learn a policy for a reinforcement learning task, referencing work done by Mnih [5] This method
greatly cuts down on the number of training episodes needed to converge to an optimal behavior for each
new environment. It allows the system to generate a general policy for exploration that doesnt overfit to a
particular environment. This presentation inspired this project, but is beyond the necessary requirements
for this project. With classical reinforcement learning, the training will allow the robot to function very
well in a specific environment or on a specific task. Recent research expands this learned exploration
behavior to create policies that can learn general exploration behavior in both high dimnesional state spaces
and continuous action spaces with reasonably bounded training time. This learning resembles the inherent
search behaviors that human beings exhibit without explicit training. Human beings learn this behavior over
the course of a lifetime, using cues and methods that are not available to a robotic platform. The ability
to replicate this behavior in an autonomous platform will come as a huge development in functionality.
Basic Al maze solving algorithms are limited by preset heuristics and unintelligent searches. When the
locations of interest are unknown in an environment that is also not entirely known or non-deterministic, the
applicability and usefulness of these algorithms are reduced. We are leveraging the Intrinsic Curiosity Module
reward function developed by Pathak [3] which learns to avoid maze walls and smoother exploration in a
VizDoom environment while searching for objects of interest. Mnih develops a series of asynchronous policy
learning algorithms that also learn behvaiors in a maze environment with specific environment rewards. These
asynchronous methods provide large reductions in training times in high dimensional spaces. The actor-critic
training algorithm is at the leading edge of progress in this direction. They have been used for manipulations
tasks [6] as well as navigating 3-D mazes in simulation using only visual and depth measurements [7]. If
a robot is trained on a particular building before a disaster, it will be readily equipped for the search on
that building, but practically useless in another environment. We will develop a real world platform that
can function reasonably in and learn to adapt to new environments using adapted versions of cutting-edge

reinforcement learning algorithms.

High-Level Requirements

1. The robotic platform will learn an action policy in a simulated environment that will allow the robot

to explore a maze-like environment.

2. When placed into a novel testing environment, the action-policy will retain exploration behaviors
learned in the testing environment and reduce environment learning time, from naive exploration

learning.

3. The robotic platform will correctly identify the survivor objects in all encounters, pick up and return

it to the pre-specified goal position using information learned about the environment.



Design

Physical Design

The physical design of this robotic platform was chosen to minimize the dynamic constraints and associated
challenges. Differential drive robots have a relatively simple set of dynamics and are inherently stable with
the two unactuated wheels. Because of this, we decided to use a tiered approach to component distribution,
which minimizes the physical footprint and allows for a greater safety margin while operating in the maze
environment. Within our performance parameters, we do not expect to run into any situations that would
make the robot uncontrollable. We have decided to place the actuator and environment sensors pointing
forward in the centerline of the robot to align, as close as we can, the coordinate frames of each unit. This
reduces the computational complexity, which is important, given the resources necessary for the sensor data

processing.

Figure 1 shows a physical design. The motors and wheels will be chosen to suit a range of performance
parameters. Because we do not know what the optimal responsiveness of this system in this environment is,
we have chosen an arbitrary desired speed and acceleration at the high end of what we estimate to be the
operable range. The two unlabelled circles in the Bottom View image are the two unactuated ball bearings
that act as rolling supports for the robot. The gripper at the front of the platform will be actuated by two
servos, one used to open and close the claw, and the other used to tilt the claw up and down in order to lift

the goal object.

Figure 2 shows the tiering aspect of the design. This streamlines the connectivity of the platform by moving
the Raspberry Pi closer to the sensors and out of the way of the major power connections between the
motors and controller. Not included in the diagrams are possible wiring holes and access points that could
be included to clean up the appearance of the platform as well as make wiring easier for the group. We will
not permanently mount any of the components into the platform frame, to give us the freedom to interchange

componenets.

Block Diagram

Figure 3 gives a layout of the different modules that are necessary for the robotic platform to function

properly.
Control Block

The control block includes the Raspberry Pi and all of its included functionalities. This includes overall robot
state control, object recognition, and RL exploration algorithms. The Raspberry will completely control the

movements and thinking of the robot.
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Table 1: Raspberry Pi Requirements and Verifications

Requirement

Verification

1. RL Exploration
(a) Training time less than 24
hours with appropriately set
episode length and environ-
mental complexity
(b) 10 Hz action calculation cycle

1. RL Exploration
(a) Time training time
(b) Use software timer to calculate
output speed, or check ROS
message publishing rate

2. PID Position Control
(a) Accurate robot center of mass
position control to within 0.2
cm for each action primitive
(b) Rise time of 300 milliseconds,
no overshoot, maximum 0.2
cm steady state error

2. PID Position Control
(a) Measure physical translation
with rule
(b) Tune PID gains in simulation
(Matlab) then apply to robot

Continued on next page




Table 1 — continued from previous page

Requirement

Verification

3. Forward Kinematics Model

(a) Must predict real-world robot
center of mass translation to
within 0.5 cm for each action
primitive

(b) Must predict real-world robot
center of mass rotation to
within 5 degrees for each ac-
tion primitive

3. Forward Kinematics Model
(a) Measure relative position with
physical ruler
(b) Measure relative orientation
with compass, compare to ori-
entation sensor output

4. Object Detection
(a) 95% accurate object classifica-
tion
(b) Object centroid placement
within 0.5 cm
(c) 10 Hz cycle rate for detection
calculation

4. Object Detection

(a) Test algorithm on multiple in-
stances of real varied objects
and count accuracy, test on
test database of images

(b) Measure projected centroid
position to projected centroid
of object using naive image
processing techniques

(¢) Use software timer to calculate
output speed, or check ROS
message publishing rate

5. State Controller
(a) Appropriate control switch
when object is to be picked up
(b) Appropriate switch to ex-
ploitation mode for object re-
turn

5. State Controller
(a) Check control actions after ac-
tivation of detection signal
(b) Monitor state variable for cor-
rect switch

Sensor Block

The sensor block contains all of the sensors that will be used to derive a probabilistic representation of the
current state of the robot in the maze. We will be using a camera and rangefinder/depth sensors as the
primary information sources. The image data will be used to identify features of the maze that can be
correlated to previously knowledge of the environment. It will also be used to identify survivor markings,
goal positions, and the object to be manipulated. The depth measurements provide help with localization
and help to inform the decisions about driving the robot. The robot will also be equipped with pressure

sensors about the body to detect collisions with the maze environment.

Image Sensor
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Table 2: Image Sensor Requirements and Verifications

Requirement Verification
1. The camera must be able to com- 1. Check for and display camera out-
municate with the Raspberry Pi put using Raspberry Pi

2. Must provide RBG color images at 2. Time ROS message publishing rate,

least 10 Hz display image output
3. Field of view greater than 30 de- 3. Measure with 30 degree angle lines
grees projected from camera frame of ref-

erence origin and check output to
see if it includes lines

Distance Sensor

Table 3: Distance Sensor Requirements and Verifications

Requirement Verification
1. The distance sensor must provide 1. Measure with physical ruler, dis-
distance measurements up to 2m tances to objects

away with 3mm precision

2. The measurements must be sent 2. Check ROS publishing rate for dis-
with at least 10 Hz frequency tance measurement

Motor Block

The motor block consists of the motors themselves, along with the encoders and drivers. This is the entirety
of the locomotive capabilities of the robot. It will be fed control signal from the control block, but will
translate that information into the physical movement necessary to navigate the maze environment. The
motor drivers must provide the correct voltage across the motors and protect them from overdrawing current
and the encoders must provide the controller with accurate information about the position and speed of the

motor.

Motors



Table 4: Motor Requirements and Verifications

Requirement Verification
1. The motors must be able to drive 1. Use linear velocity measurements to
the robot a 0.3m/s at £10% check speeds, use time and distance

measurements to calculate approxi-
mate velocity

2. Must provide enough torque to 2. Apply midrange PWM control sig-
move robot nal to motors and check for move-
ment

Encoders

Table 5: Motor Encoder Requirements and Verifications

Requirement Verification

1. Encoders must provide 0.5° &= 10% 1. Measure angular displacement us-
ing a compass for a specific input
rotation of 0.5°

Motor Driver

Table 6: Motor Driver Requirements and Verifications

Requirement Verification
1. The motors must be able to be 1. Apply backwards control signal and
driven in both directions at equal measure wheel speed
speeds
2. Current draw must be limited to 2.4 2. Clamp motors and set control sig-
A, stall current nal them while measuring input am-
perage with a multimeter, check for
cutoff

Power Block

The power block consists of the battery and voltage regulators necessary to power all the components onboard
the robot. The battery will be a 3S LiPo battery with 2.2Ah capacity.



Battery

Table 7: Battery Requirements and Verifications

Requirement

Verification

1. Must stay above 3V per cell during

operation of the robot

1. Measure battery cell voltages con-
stantly during operation using LiPo
voltage alarm

2. Must provide power for continuous

driving session of at least 15 min-
utes

2. Time usable battery time during
real world maze exploration

Voltage Regulators

Table 8: Voltage Regulator Requirements and Verifications

Requirement

Verification

1. 6V Voltage Regulator
(a) Must supply constant 6V +5%
output voltage while the bat-
tery discharges
(b) Must be able to sustain cur-
rents up to 2.4 A

1. 6V Voltage Regulator

(a) Measure voltage output of
voltage regulator over the
course of a fully battery oper-
ating discharge

(b) Clamp motors and drive until
motor driver shutdown, mea-
sure amperage with multime-
ter

2. 5V Voltage Regulator
(a) Must supply constant 5V +5%
output voltage while the bat-
tery discharges
(b) Must be able to sustain cur-
rents of 1.2 A

2. 5V Voltage Regulator

(a) Measure voltage output of
voltage regulator over the
course of a fully battery oper-
ating discharge

(b) Measure output current when
all peripherals are tied to
Raspberry Pi and running

Manipulator Block

The manipulator block consists of two servos that will be used to grasp and lift the goal object in the maze.

Their actuation will be controlled by another block and their power is also provided by another block.

10



Table 9: Servo Requirements and Verification

Requirement Verification
1. Grasping Servo 1. Grasping Servo
(a) Must provide at least 1N -m to (a) Grip object above ground level
grasp object to overcome grav- to make sure that it doesn’t
itational pull slip
2. Lifting Servo 2. Lifting Servo
(a) Must provide at least 1.5N -m (a) Pick up objects with gripper
to lift gripper, grasping servo, assembly to test ability to lift
and object goal objects

UI Block

In order to visualize the state of the robot and its decision making process, we have decided to send back
state information that can be presented on a groundstation computer. This state and decision information
can be presented alongside useful visuals such as optimal navigation decisions at each point of the maze for

different objectives and overhead views of the maze environment.

Since this block only a groundstation computer, the block requirements are simplified to needing a Wi-Fi
enabled computer than can recieve and display information from the Raspberry Pi and activate the robot’s

maze exploration over SSH protocol.

Software Design

We will use a ROS framework for our robotic platform running on the Respberry Pi. Through this, we
can leverage the many libraries that are available for robotic control as well as the various python libraries
that can be used. We will use the Tensorflow library to train and test all of our neural networks, for
both exploration and object detection purposes. We will use OpenCV for image preprocessing and object
detection verificaiton. We will use the OpenAI Gym environment with the Gazebo simulations to train the
exploration. Sensor inputs will be sent to the Raspberry Pi. The two seperate algorithms, exploration and
object detection, will be running simultaneously using different sets of inputs provided to the Raspberry Pi.
We will implement a two-state system that switches into object retrieval mode when it recognizes an object.
It will move towards and pick up the object by centering the object centroid in the image and using the
distance sensor to approach it. The robot will then use information it has learned about the environment in
the exploration phase to return the object to a goal state, by setting the goal state as the destination. After

retrieval, it will either return to exploration with a limit on episode length or terminate function.
RL Exploration

We will used a multi-agent asynchronous update n-step Q learning algorithm to train the exploration algo-
rithm on our test environments, it will take the vehicle position, orientation, relevant distance measures, and
a subsampled subsection of the input image as the state parameters. We will use the ICM reward function
in addition to specific environemental rewards such as penalizing proximity and rewarding finding the pre-

placed markers and object retrieval. We will train the algorithm using the OpenAI Gym Maze environment

11
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with multiple concurrent agents exploring the state space with asynchronous updates on the model. The
model will based on a set of action primitives, do nothing, move forward by an incremental amount, or turn
in either direction by an incremental amount. We can use a simple forward kinematics model with each
action with verification provided by the control system run on the MCU using the motor encoders. We
will not have a global positioning system provided that can account for wheel slippages, but since we are
constraining the environment we will assume that this will not occur in a great amount and that the other

state values will provide a sufficient check on position error.

The state transition is further specified by Figure 6. We use a forward kinematics model of the robot to
predict the next pose of the robot, given the action primitive chosen from the previous state. This model
cannot account for possible slippages in the wheels, or environmental disturbances to the robot, because we
dont have a valid measurement for global position. If we did, we could use Kalman Filtering to establish
a converging estimate of the position and use that in each state. Since we expect the end-goal of this
work to search in GPS-denied environments and without motion capture systems, we want to remove the
dependence on learned search behaviors from exact position mappings as much as possible. We also want
the learned behaviors to be portable to a new maze environment. The ICM research uses only image data
in their simulated testing of the algorithm, but we expect that environment noise will necessitate the use of
estimated state [3]. Fortunately with appropriate constraints on the environment, we can reduce slippages

and disturbances to minimize this effect.
Object Recognition

To recognize the objects of interest, we will preprocess the images provided by the image sensor by truncating
the image provided by the RPi camera to the region of interest and downsample (if appropriate) to a smaller
size input image for the convolutional neural net. We will use a Single-Shot Detector algorithm to identify
and locate the object in the image. Implementability is simplified with examples from the TensorFlow
Object Detection zoo. We will need to train our net on images of our object, however, which will require an
extensive, labeled data set of images of the object. We will choose the object based on available data sets

or the difficulty of creating our own image set.
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Environment
Simulated

We will be using the OpenAl gym extension with Gazebo simulation to develop and visualize the maze
environment. Unlike the image, our maze environments will not be loops, but will be fully connected with
room-like features. We will also increase the wall contrasts and experiment with additional features and
texturing on the walls to decrease correlation between states. We can create a simulated robot using the
Gazebo software package that includes all of our real world peripherals. Since all of our functionality will be

written in ROS using python, it is an ideal simulation and training environment.
Real

For testing and demonstration purposes, we will need to develop a real maze environment that mimics to a
high degree the type of maze that we used in simulation. We will be using tape wrapped bricks to create a
modular system for making mazes. We will color the faces of the bricks with colored paper to provide visual

markings for the robot. The base will be made of plywood to provide a low-slip surface for driving on.

Tolerance Analysis

There exists a large amount of uncertainty in building the robot to navigate through a maze and retrieve
objects. There are some negligible errors from resistors, sensors, and pcb board. For example, the range
of error for the ultrasonic sensor is approximately around 2mm. If we were to try and find the distance of
something about 5 meters away, that would mean that at worst we would have a .04% in our measurement.
This is not significant enough to effect the distances at which the robot would observe walls or objects.
However, there are also errors that we must to take into consideration when building the robot. Encoder
and servo precision might be the main sources of error for out robot. Encoders that come with the motors
might have low accuracy. Therefore, in order to minimize the error, encoders first need to be calibrated.
After calibration, there errors still occur, we would put markers in the maze to help robot to locate itself.
Based on the encoder data and markers in the maze, we can get more accurate position of the robot. Another
big error issue may comes from servo precision and camera quality. Errors caused by servo accuracy and
fishbowl effect may cause to grapper deviate from desired position. However, we are able to reduce error

from servo and camera using some algorithms.
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Figure 8: Simulated Maze Environment
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Cost and Schedule

Cost

Labor

We calculate that our fixed labor costs over the course of the semester will be

h
3.35° 191 k. 25— $50, 400
hr wk

Parts

Following is a starter table for parts costs. Add cell contents as well as rows and, if necessary, columns.
Update the table number according to your sequence. Note that columns 1 and 2 are set up for centered

text (words) and columns 3~5 (numbers) are set up for right-alignment so that decimal points align.

Table 10: Parts Costs

Part Manufacturer Retail Cost Bulk Actual Cost
(%) Purchase (%)
Cost ($)

99:1 Metal Gearmotor Pololu 34.95 31.46 69.9
Universal Mounting Hub Pololu 6.95 6.12 6.95
11.1V LiPo Battery Pack Turnigy 10.99 10.99 10.99

HS-422 Servo Motor RobotShop 11.49 11.03 22.98
Large Robot Gripper RobotShop 19.50 18.92 19.50
Raspberry Pi Amazon 42.99 42.99 42.99
Raspberry Pi Camera Amazon 26.44 26.44 26.44
Ultrasonic Sensor EMakeFun 9.99 9.99 29.97
Motor Driver (DRV8835) Texas Instruments 1.80 1.80 1.80
32 GB MicroSD Card Amazon 13.88 13.88 13.88
Total 245.4
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Schedule

Schedule
Week Karun Koppula Zachary Wasserman Zhijie Jin
2/12 Research project implemen- | Begin looking into algorithms | Research voltage regulators
tation ides and simulations. Code par-
tial of simulation
2/19 Create algorithmic workflow | Prepare report and research | Research Battery Packs and
for Design Document and | OpenAl gym for robot simu- | voltage requirements for
write design doc lation purposes parts
2/26 Order Parts, Write n-step Q | Prepare OpenAl gym simu- | Design PCB for voltage regu-
learning algorithm, and set | lation environment for robot, | lators and motor controllers
up ROS framework on RPi look into SDD implementa-
tion examples
3/5 Write ICM and run training | Write and train SSD algo- | Give parts and specifications
set rithm on generic data set pro- | to Machine Shop
vide
3/12 Create simulated robot and | Develop object data set and | Develop Forward Kinematics
environment, adapt ICM to | train SSD on image set model for action primitives
robot specific state
3/19 Spring Break Spring Break Spring Break
3/26 Continue to develop robot en- | Testing SDD object recogni- | Robot Assembly, funcitonal-
vironment in simulation tion on RPi using RPi camera | ity verification, develop PID
control for motors
4/2 Parallelize processing capa- | Develop robot state con- | Object pick-up procedure and
bility on the Pi, train full ex- | troller, object pick-up proce- | maze assembly
ploration algorithm in simu- | dure, and maze assembly
lation and test performance
in real maze, and maze as-
sembly
4/9 Test Robot exploration abil- | Develop and test robot return | Test and optimize robot state
ities experiment with hyper- | to goal with picked up object | control
parameters
4/16 Experiment  with  perfor- | Debug all systems Debug all systems
mance, debug
4/23 Train robot for demonstra- | Write final paper Write final paper
tion, write final paper
4/30 Finish final paper and demon- | Finish final paper and demon- | Finish final paper and demon-
stration stration stration
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Ethics and Safety

Ethics

We believe that our project is aligned with the first tenet of the IEEE Code of Ethics, to hold paramount
the safety, health, and welfare of the public, [2] because our project is designed to help move robotic un-
derstanding of real world systems towards the ability to save lives. We strive to use the understanding of
intelligent systems to benefit the public good. This leads to the importance of #5 of the Code, to improve
the understanding by individuals and society of the capabilities and societal implications of conventional
and emerging technologies, including intelligent systems [2] in that it will be our duty to inform the public
about the beneficial uses of the technology that we are working with and how they can be further used to
help society. Since the success of the project is directly dependent on the functionality of the reinforcement
learning algorithm, it is very important that we accurately report our results, regardless of the outcome.
Inconsistent data and unreliable reporting would violate #3 of the Code [2] and would negatively impact
the field of robotics research and our character as engineers. In the same vein, it is very important that we
give appropriate credit for the previous works that we use and build on to develop our system. It would be
unethical to take credit for the work of others in accordance with #7 of the Code [2]. We will be using and
learning from many different research sources as well as from our peers and faculty members as we progress

through this project and need to accurately present the chain of knowledge and development.

Safety

The major safety consideration of this project resides in the safe operation and storage of the battery. LiPo
batteries can be dangerous if used improperly. They do generate heat during high-load discharge, which we
must monitor throughout robot operation. We possess an industry approved LiPo charger and balancer for
charging and discharging operations. We will, however, still be careful to not work alone while batteries
are in operation. Since our group has little experience with building and designing circuits, we will have to
be especially careful when designing and testing our custom printed PCB that contains the MCU, motor
drivers, and voltage regulators. Voltage regulators can dissapate a lot of heat as well, so we must ensure
that appropriate heat dissapation is provided to the circuits and other components. Short circuits, fires, and
electricution are all possible safety hazards when working with these materials, so we will take standard lab

safety precautions, as well as asking for input from the course staff and other experienced personnel.
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