

 Dynamic Keyboard

 ECE 445 Design Review
 Team 20:

 Nigel Haran
 Jeevitesh Juneja

 TA: Xinrui Zhu

1

Contents
1. Introduction
 1.1 Objective……………………………………………………………………………………….. 3
 1.2 Background…………………………………………………………………………………..... 3
 1.3 High Level Requirement……………………………………………………………………… 4
2. Design
 2.1 Block Diagram…………………………………………………………………………………. 4
 2.2 Physical Design……………………………………………………………………………….. 5
 2.3 Hardware Design …………………………………………………………………………….. 6
 2.3.1 Power System………………………………………………………………………….. 6
 2.3.1.1 USB 2.0 Power Supply…………………………………………………...…... 6
 2.3.1.2 Voltage Regulator……………………………………………………………… 6
 2.3.1.3 Voltage Divider…………………………………………………………...……. 7
 2.3.2 Microcontroller…………………………………………………………………………… 7
 2.3.3 User Interface……………………………………………………………………………. 8
 2.3.3.1 LCD Display…………………………………………………………………….. 8
 2.3.3.2 Program Switch………………………………………………………………… 8
3.Calculation and Simulations ……………………………………………………………………… 9
 3.1 Voltage Regulator LM317……………………………………………………………………. 9
 3.2 Voltage Divider…………………………………………………………………………...….. 10
 3.3 Plots…………………………………………………………………………………………... 10
 3.4 Software Design …………………………………………………………………………….. 13
 3.5 Tolerance Analysis …………………………………………………………………………...17
4. Risk Analysis…………………………………………………………………………………...….. 19
5. Requirement and Verification ………………………………………………………………….. 19
6. Cost and Schedule ……………………………………………………………………………….. 22
 6.1. Cost Analysis………………………………………………………………………………….. 22
 6.1.1 Parts……………………………………………………………………………………... 22
 6.1.2 Labor…………………………………………………………………………………….. 22
 6.1.3 Grand Total……………………………………………………………………………… 23
 6.2. Schedule………………………………………………………………………………………... 23
7. Ethics and Safety………………………………………………………………………………….. 25
Citations ………………………………………………………………………………………………. 26

2

1. Introduction
1.1 Objective
 Programmable keyboards today suffer from the limitation of only being used through
software programming and having a lack of communication with the user on its functionality.
This limitation forces individuals to only be able to utilize programmable keys through the
computer that programmed the keyboard. It also limits the user to only using one keyboard with
the programmable keys instead of being able to use the programmable keys with any keyboard.
This can be an issue based on the fact that some keyboards are programmed to provide
efficiency, but cannot provide that efficiency with every computer it interacts with.

 We hope to resolve this issue by providing a programmable keyboard that is programmed
through the hardware instead of the software. This is done by having an add one product that
reads the keys being pressed through the USB output of the keyboard, recording it, and
programming it to a key on the keyboard while providing feedback to the user through an LCD
display. By having the keyboard use a hardware based programmable format, the macros that
are programmed can be applied to any computer. This is useful for many computer programs
and jobs that require the use of multiple key inputs that can become tedious over time. We hope
to apply an add on with an LCD display and series of switches that will record the combination
of keys pressed and apply that to a programmable key. However, this would potentially cause a
lack of feedback for the user to know whether the programmable key is reading all the functions.
We will resolve this by providing an LCD based attachment that will read the function that is
being processed and provide a display of the functions being executed at the time to show that
the programmable keys are performing what must be done.

1.2 Background
We feel this issue is important because there is the restriction of limiting programmable

keyboards to software. Currently on the market there are programmable keyboards that are only
programmable through software. They are designed to provide cosmetics such as color coding
for the programmable keys or extra buttons that provide shortcuts. Examples of these
programmable keys are the Logitech G810 [4], which provides the programmable keyboard with
high end switches, LED backlight, hardware built for gaming, etc. There is also the
LogicKeyboard Astra [5], which provides backlighting and custom imaging for the keycaps.
These two examples are some of the more popular choices when searching for a programmable
keyboard. These examples show that most programmable keyboards differ based on the
cosmetics and parts used, while still relying on software for the programming. Our design is
trying to provide a keyboard that is programmable through the hardware of the keyboard itself.

By having a keyboard be programmable through hardware it makes the programming
aspect be more accessible and no longer have its location limited. This also allows the keyboard
to be independent of the program that is being used on the computer. This is an issue with

3

keyboards that are programmed to be used under a specific computer and program. An
example as to how this will be useful is for jobs that revolve around using programs like
photoshop where an individual has to press a series of keys over and over again. By having a
keyboard that can be programmable to perform the series of keys pressed for a single key, they
can perform their job more efficiently. By having a keyboard that is programmable through the
hardware, this individual can perform their job with efficiency at any computer, instead of relying
on the computer they used to program the keyboard. By having the LCD display provide
feedback it helps the user know what keys are being registered and make sure that the
programmable keys have been programmed correctly and debug if there is any issue.

1.3 High-level requirements

● Provide user interface feedback of the keys being pressed through an LED display
● Write and rewrite programmable keys.
● Performs on any keyboard and computer
● Keep programmed macros saved for use between different keyboards and computers

2. Design
2.1 Block Diagram

Figure 1: Block Diagram showing that we will have the USB 2.0 provide power to a voltage

regulator that will provide 3.3V to the microcontroller and maintain 5V for the LED and switch.
The controller will provide information through an interrupt for the LED to display and device to

program to a key if the switch is activated.

4

2.2 Physical Design

 Figure 2: Physical Design and Dimensions of product

5

2.3 Hardware Design
2.3.1 Power System
 A power supply is needed in order to provide the power for all the components in the
circuit. We decided to use the USB 2.0 power supply from the keyboard, which can benefit the
user by having the power supply built in with the keyboard and not consistently purchase
batteries. We will also utilize voltage regulators in order to satisfy the power requirements for the
components that require power and provide safety for both the user and the components of the
circuit.

2.3.1.1 USB 2.0 Power Supply
 A standard USB 2.0 will provide enough power for the entire device. The USB 2.0 is
capable of providing a regulated standard of 5VDC to the keyboard [6] in which 3.3V is needed
in order to power the microcontroller, driver, and flash memory and 5V are needed in order to
provide power for the LCD display user interface.

2.3.1.2 Voltage Regulator
 Input: 5V power from the USB 2.0
 Output: 3.3V power for the microcontroller, driver, and flash memory. 5V power for the
 LCD display user interface.

 The circuit is made of an LM317 adjustable voltage regulator. The purpose of
this voltage regulator is to take in the voltage input and produce a limited voltage output
for the rest of the circuit components such as the microcontroller and LCD display. The
regulator has a range of input voltage and a maximum output current of 1.5A. The two
resistors are for adjusting the output voltage. This is done by having a value for one
resistor and adjust the value for the other resistor in order to control the output voltage.
The capacitor filters out AC noise, while the other capacitor improves ripple rejection.
The schematic and printed circuit of the voltage regulator is provided below. [8]

6

Figure 3: The schematic of the voltage regulator where R2 is 390Ω for a 3.3V regulator
and 720Ω for a 5V regulator.

2.3.1.3 Voltage Divider
 The voltage divider is two resistors connected in series, this produces a fraction of the
voltage supplied by the USB 2.0 which would be too much for the microcontroller and flash
memory.

2.3.2 Microcontroller
Input: Keypad signal, 3.3V power
Output: Keystrokes pattern for programmable keys

We plan to use the PIC18F2550 microchip as they have Full Speed USB 2.0 (12Mbit/s)
interface that is required to communicate with the keyboard and computer. As each chip only
contain one USB interface we have decided to use 2 PIC18F2550 in a Master/Slave
configuration to communicate between our 2 devices. The 256 bytes of programmable storage
space on each chip was also another factor in our decision as the we need to be able to store
the macros in non-volatile memory. Figure 4 below shows the the circuit diagram for the 2 chips
and includes their connection to other components such as the LCD display, Set MAcro button
and USB ports.

7

Figure 4: Microcontroller Circuit Schematic

2.3.3 User Interface
2.3.3.1 LCD Display (NHD-0116DZ-FL-YBW)
Input: Key interrupts from the microcontroller and 5V from the power supply
Output: Key interrupt pattern on the display

 We wish to use this LCD in order to provide all the characters of the keyboard when
we utilize each key. It will allow the user to know the add on is functioning and that the
programmable key is being correctly implemented. We are implementing this through a 1 line 16
character LCD display. [7]

2.3.3.2 Program Switch
Input: Key interrupt from microcontroller and 5V power supply
Output: Key interrupt pattern to provide to the LCD and programmable key

8

Figure 5: LCD Display Schematic

3 Calculations & Plots
3.1: Voltage Regulator LM317
The output voltage of LM317 is measured as [8]

 Eq.1out V ref (1) adjR2V = + R1

R2 + I

In this case Vout is the voltage output once the voltage has gone through the regulator

and has been properly divided to provide the desired voltage. Vin is the input voltage from the
USB 2.0 power supply. Vref is the voltage that is between the output and adjustments with a
value of 1.25V. Iadj is meant to stay minimal in order for the line and load to stay constant.
However, because the input current will be small enough, it will not effect the results. We
assigned a value of 240 ohms for R1 and use the desired output voltage in order to determine
the value for R2. The equation below allows us to figure out what value we want for R2.

In one instance we want an output voltage of 3.3V for the microcontroller and flash memory, this
leads to the following value for R2 needed for the voltage regulator.

out 1.25(1)V = + R2
240

9

out 1.25 V = + 240
1.25R2

out 1.25 V = + R2
192

out .25 V − 1 = R2
192

 Eq.22 92V out 240R = 1 −

2 92(3.3) 40 R = 1 − 2
2 633.6 40 396.6ΩR = − 2 =

We use this same set up in order to find the resistance of the 5V output.

2 192(5) 240R = −
2 960 240 720ΩR = − =

3.2: Voltage Divider

When using the voltage regulator we need to apply a voltage divider in order to limit the voltage
input and produce the necessary voltage output.

 Eq.3V in
V out = Rdown

Rup+Rdown

Rdown
Rup+Rdown = V in

V out

 Eq.4
Rup
Rdown = V out

V in−V out

 Vin is the critical voltage level and Vout is half the Vout we want which is 1.65.

.24Rup
Rdown = 1.65

7−1.65 = 3

10

3.3 Plots

Below is a plot of the 3.3 regulator where the regulator will make the output voltage reach 3.3
when it is at a 5V input. If it exceeds a 5V input it will still maintain a 3.3V output.

Figure 6: Plot of the 3.3 voltage regulator activity when it surpassed 5V it should level out to

3.3V

11

Below is a plot of the 5V regulator where the regulator will make the output voltage reach 5V
when it is at a 5V input. If it exceeds a 5V input it will still maintain a 5V output.

Figure 7: Plot of the 5V voltage regulator showing that when the input surpassed 5V it should

maintain 5V output.

12

3.4 Software Design

The software control logic of the the microcontrollers are shown in the figures below. The Master
Microcontroller takes on the roles of storing and recognizing the appropriate scan-code
associated with the the macro keys and controlling the output of the LCD display. It is also
responsible for forwarding any relevant Keyboard output to the Slave Microcontroller. Figure 8
illustrates the control logic of the Master Microprocessor during normal operation, while Figures
9, 10 and 11 describe the control flow when an interrupt is generated from the Keyboard, Slave
Microprocessor or Set Macro Button respectively. These interrupts are expected to be
asynchronous in initiation however, they execute atomically with respect the the control flow
during normal operation.

Figure 8: Control Flow of Master Microprocessor during normal operation

13

Figure 9: Control Flow of Master Microprocessor when interrupt received from Keyboard USB
port

14

Figure 10: Control Flow of Master Microprocessor when communication received from Slave
Microprocessor

Figure 11: Control Flow of Master Microprocessor when Set Macro Button pressed

15

The Slave Microcontroller takes on the roles of storing and and outputting the array of
scan-codes, associated with each of the macro keys, to the computer. It is also responsible for
managing some control booleans the effect the Master Microcontrollers operation. Figure 12
illustrates the control logic of the Slave Microprocessor during normal operation, while Figure 13
describes the control flow communication is received from the Master Microcontroller.

Figure 12: Control Flow of Master Microprocessor during normal operation

16

Figure 13: Control Flow of Master Microprocessor when communication received from Slave
Microprocessor

3.5 Tolerance Analysis

The core component of this project is the the ability for our product to implement user defined
macros and then be able to have these macros, once set, available and functional with any
combination of standard USB keyboards and Windows PC. Thus, the ability to store an array of
scan-codes that can be outputted to the PC at a push of a button is integral to the success of
this project. Another feature of our project is that it is not reliant on having its own power source,
rather the entire circuit is powered by the standard 5V current provided by the USB 2.0 port on
the PC. This means that any data stored in volatile memory will be lost once the device is
unplugged. This in turn requires us to store the macros in non-volatile memory. Fortunately the

17

PIC18F2550 microprocessor come from the EEPROM for data storage purposes. However,
there are several limitations with using this memory that we must consider. Our analysis will
focus on the data storage limitations of the PIC18F2550 microprocessor.

Data Storage

Due to the limiting nature of the microprocessors we are using we have a limit in the space
available for us to use. Looking at the Data Sheet we see that the PIC18F2550 microprocessor
boasts 2,048 Bytes of RAM. However, since this is volatile memory it is not an effective
measure of the space we have available to store our macros. Another consideration to not is
that while the PIC18F2550 microprocessor also contains a large amount of non-volatile
memory, the majority of it is allocated towards Program Memory and will not be usable for us to
store scan-codes. Upon further reading of the Datasheet informs us that the PIC18F2550
microprocessor has 256 Bytes allocated for data storage.

Our next step is to calculate the estimated amount of storage space required for the average
macro. As each macro can be of different length this is a variable amount. It is also important to
understand how the space is being used between the two microprocessors that comprise our
control system. Analysing the flow charts we discover that while the Master Microprocessor
stores the scan code for the macro key, it is the Slave Microprocessor that stores all of the scan
codes that are to be outputted to the PC when the macro is initiated. As macros are generally
composed of multiple key presses, it is the data storage space available in the Slave
Microprocessor that become the major bottleneck of our project.

Scan-codes are 1 to 3 byte codes that are outputted by the keyboard to the PC. However, the
USB HID simplifies this to uniform 1 byte scan codes. It is also important to consider that
pressing a key down and releasing it generates two separate scan codes, and while this is
possible to get the intended effect of your macro by simply outputting the the key down scan
codes, it can cause unintended consequences if the PC thinks you are holding down the keys in
your macro. Further, we estimate the average macro created by our design will contain 3 distinct
key presses, which totals in 6 scancodes per macro.

 256 Bytes / (1Byte*6) = 42.67 Eq. 5

As shown in the above calculation we should then on average be able to store 42 different
macros on our device. This model however does not take into account any of the overheads
associated with the Macro objects we are storing in memory. We would need to store pointers to
the beginning of each of these objects. Furthermore, there needs be a way for the program to
tell where the the list of scan codes for each of these macro ends, the easiest way of which
would be to null terminate the Scan-Code Objects. This would add an additional 2 bytes per
macro as a bare minimum storage requirement.

 256 Bytes / (1Byte*6+2Bytes) = 32 Eq. 6

18

Therefore our final analysis results in us having a maximum of 32 programmable macros in our
device. It should be noted however that the real number would be smaller in practice. There is
also a concern of buffer overflow if the user creates macros much larger than our expected
bounds.

4 Risk Analysis:
The part of the keyboard design that poses the the greatest risk towards our success is the
successful implementation of the Keyboard Controller along with the Flash Memory. As these
two components implement the core functionality of the project, which is the hardware
programmable keys, and it is vital that the components be properly functional. A failure of this
juncture could not only make us unable to reach our design requirements, but also jeopardize
the functionality of the keyboard as a whole. Further, this is the one truly innovative component
of our design and thus there will be little prior reference available for its proper implementation.
Therefore, we must take extra care when implementing the Keyboard Controller and Flash
memory components of this project. Something that has to be put into consideration is that our
design could be manipulated to act as a keylogger in which we would have to apply restrictions
towards the usage of our design and have a terms and agreements to not hold the producer
liable.

5.Requirement and Verification
Table: The requirement and verification for the Power Supply

Requirement Verification Point

Voltage Regulator 6

The voltage across the output
and ground for LM317-1 must
be 3.3V with a max error of
5%.

1a. Connect USB 2.0 to the
input of the regulator to
provide a voltage of roughly
5V.
1b. Connect a Digit
Multimeter to the output of
the circuit and ground in
order to measure the voltage.

2

The voltage must remain
stable during the power
supply from the USB 2.0.

2a. Have the Digit Multimeter
connected and measure as
the power supply output is
altered.

2

The voltage across the output 1a. Connect USB 2.0 to the 2

19

and ground for LM317-2 must
be 5V with max error of 5%

input of the regulator to
provide a voltage of roughly
5V.
1b. Connect a Digit
Multimeter to the output of
the circuit and ground in
order to measure the voltage

Requirement Verification Point

USB 2.0 Power Supply 2

The voltage across the output
and ground must be 5V with
max error of 5%

1a. Connect output of the
USB 2.0 power supply to a
Digit Multimeter and measure
the voltage.

2

Requirement Verification Point

LED Power 2

The voltage provided to pin 7,
LED+ must read 5V while pin
8, LED- reads 0V providing
the correct power and ground
for the LED display.

1a. Connect the input to pin 7
and ground to pin 8 of the
LED chip to a Digit Multimeter
and measure the voltage.

2

Requirement Verification Point

LED Display 10

Displays a coded string of
characters correctly

1a. Utilize the keyboard to
send a bit string to the LCD
through the microcontroller.
1b. The LCD has the correct
string of characters on the
display board.

10

Requirement Verification Point

20

Microprocessor 28

Master microcontroller
correctly receive scancodes
and recognises when macro
key has been pressed

1a. By outputting to the LCD
display when a macro key is
pressed on the keyboard we
can effectively test whether
the Master microcontroller is
recognising the scan codes
correctly.

6

Master microcontroller
correctly outputs to LCD
display

1a. Run tests to have the
Master microcontroller output
predetermined output to the
LCD display and see it the
expected outputs are
correctly displayed.

5

Have correctly implemented
Inter-integrated Circuit (I2C)
communication protocol
implemented between master
and slave microcontrollers

1a. Have a listener cuitcut
and analyse the waveform to
see if thee communication
protocol is being correctly
followed

5

Have the master and slave
microcontrollers correctly
store the into EEPROM the
scan codes for the macro key
and the macro.

1a. Connect the
microprocessor via USB to a
computer an run a test code
that outputs the data stored in
the EEPROM of the chips

6

Have the Slave
microcontroller only send
valid scan-codes to the
computer

1a. Have a computer side
code that prints out the
scancode being received by
the computer via the slave
chip

6

Requirement Verification Point

Set Macro Button 2

Have the Set Macro Button
correctly register button
presses, with less than 2% of
false positives or unwanted
double click being registered

1a. Connect Button output to
to multimeter to see it
presses are registered
correctly

2

21

6. Cost Analysis and Schedule
6.1 Cost Analysis
6.1.1 Parts

Part Name Part Number Unit Cost Quantity Total

Microcontroller MSP-EXP430F5
529LP

$13.49 2 $26.98

Voltage
Regulator

LM317 $0.98 4 $3.92

Keyboard Logitech K360 $24.95 1 $24.95

Toggle Switch $2.90 1 $2.90

LED Display NHD-0116DZ-F
L_YBW

$13.90 2 $27.80

3D Printer
Usage

Outside provider $10 1 $10

 $96.55

6.1.2 Labor

The national average salary is roughly around $67,899 for the year. [9] By performing the
calculation

 67,899 x x x Eq. 7year

dollars
year

12 months
month

4 weeks
week

40 hours

we can gather that the average weekly wage is around 35 dollars for the average work week.
Using this information we can gather the labor cost for each partner estimating roughly 20 hours
per week worth of work for the 13 weeks since partners have been assigned.

 20 x 13 weeks x 35 x 2.5 = $22750 per person Eq.8week
hours

hour
dollars

22

6.1.3 Grand Total of Labor

Name Hours Invested Hourly Rate Total Cost

Nigel H. 260 $35 $22750

Jeevitesh J. 260 $35 $22750

3D Printer Provider 2 $8.25 $16.50

Total 340 $45,516.5

6.2 Schedule

Week Nigel Haran Jeevitesh Juneja

2/5 Finalize Project Proposal

Review Project Proposal

2/12 Research and select voltage regulator
Research and select keyboard
Research and select LCD display

Research and select microcontroller

2/19 Finalize Design Document
Apply extra hardware to project

Review Design Document
Prepare for design review

2/25 Study Datasheets
Purchase all hardware and parts

Begin programming microcontroller

3/4 Design PCB
Build prototype on breadboard

Test microcontroller

3/11 Put in the order for the PCB
Debug prototype

Interface microcontroller with
keyboard
Interface microcontroller with LCD

3/18 Work on Final Report
Request 3D print of casing

Run tests

3/25 Set up PCB Run tests on the project

4/1 Test and debug power measurements Test and Debug microcontroller

23

4/8 Prepare for mock demo

Optimize all parts

4/15 Prepare Presentation Prepare Demo

4/22 Finalize Paper Prepare Presentation

4/29 Turn in Final Paper
Lab Checkout

Proofread Final Paper

24

7. Ethics And Safety:

 In general there is very little health and safety risks. Standard safety issues include
the risk of developing arthritis and discomfort during the use of the keyboard. [3] However, in
order to prevent any safety risks during the development of the keyboard, we must make sure to
follow the safety guidelines that were addressed during the lab safety tests. We must also
respect the designs of previous keyboards and give credit where it is due. We must also prevent
any misuse of our product and condone the use of our product to commit unethical actions.
Another possible ethical issue to address is to accept when an area of knowledge is outside our
area of expertise and to obtain help through research and other outside resources. [1]

 In order to comply with the first established policy of the IEEE Code of Ethics we shall
make sure to establish materials like a voltage regulator in order to limit the amount of power
flowing through the device and not put the user at risk. We will also make sure to implement the
standard safety principles for the safety of the consumer and workers such as no exposed
wires, materials that are not toxic, and insulators that will prevent shocks. To comply with the
second law of the IEEE code of ethics we will establish all interests and address when there is a
conflict between them. If there is a conflict of interests, we will try to resolve the conflict on our
own. If the conflict can not be resolved, we will bring an outside party to give their input. The
third code of ethics can be addressed by researching concepts that are confusing until and
understanding is developed. [1]

 The fourth code will be addressed by not performing any acts of bribery or to accept any
forms of bribery. It shall also be addressed by reporting any case of bribery that occurs during
the development process. [1] The sixth code of ethics will be addressed by performing what we
can do with our knowledge. If we have an issue during the development, we will seek help from
the TA and course staff when facing an issue that cannot be solved by us alone. The seventh
code of ethics will be addressed by taking all criticism from the assigned TA, course staff, and
fellow peers. We will work together in order to resolve any issue that is addressed by outside
criticism. The ninth code of ethics will be resolved by following the safety principles that were
addressed during our safety test and to follow all the principles established during the safety
training portion of the course. The tenth code of ethics will be addressed by offering assistance
and guidance to fellow students and partners in order to provide improvement in both the
product and the individual behind it. [1]

 We will honor the 1.5 ACM code of ethics by looking into the patent of any design
aspect we are considering to use and make sure not to wrongfully use something that will break
copyrights. We will honor the 1.6 ACM code of ethics by giving credit to all design aspects that
have already existed such as the general design of keyboards and the concept of a

25

programmable keyboard. We will honor the 2.1 ACM code by not using materials that cut in
costs or quality of the product. We will make sure to use materials that are for the best of our
design and not place peers or consumers at risk. [2] Finally we will address the risk of privacy by
clearly placing the uses of the product so that it cannot be used as a keylogger. We will address
how this is a breach of the terms & agreements of the product securing the safety of the user
and providing proper punishment for the unethical uses of the product.

Citations
[1]Ieee.org, "IEEE IEEE Code of Ethics", 2018. [Online] Available:
http://www.ieee.org/about/corporate/governance/p7-8.html. Accessed: 6 Feb 2018.

[2]acm.org, “ACM Code of Ethics and Professional Conduct,” 2018. Available:
https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct#sect2.
Accessed 6 Feb 2018

[3]workplaceohs.com, “Computers,” 2018. [Online] Available:
http://workplaceohs.com.au/hazards/office-safety/computers . Accessed: 6 Feb 2018.

[4]logitechg.com, “G810 Orion Spectrum,” [Online] Available:
https://www.logitechg.com/en-us/product/g810-orion-spectrum-rgb-gaming-keyboard . Accessed
10 Feb 2018.

[5]logickeyboard.com, “Avid Media Composer PC Backlit Astra Keyboard,” [Online] Available:
http://logickeyboard.com/shop/avid-media-composer-astra-backlit-pc-keyboard-3417p.html .
Accessed: 10 Feb 2018.

[6]superuser.com, “What is the power output of a USB port,” [Online] Available:
https://superuser.com/questions/690074/what-is-the-power-output-of-a-usb-port . Accessed: 6
Feb 2018.

[7]mouser.com, “NHD-0116DZ-FL-YBW,” [Online] Available:
https://www.mouser.com/ds/2/291/NHD-0116DZ-FL-YBW-34847.pdf . Accessed: 18 Feb 2018

[8]ti.com, “LM317 - 3 Terminal Adjustable Regulator,” [Online] Available:
http://www.ti.com/lit/ds/symlink/lm317.pdf . Accessed: 13 Feb 2018

[9] ece.illinois.edu, “Salary Averages,” [Online], Available:
https://ece.illinois.edu/admissions/why-ece/salary-averages.asp . Accessed: 23 Feb 2018

[10] microchip.com, “PIC18F2550,” [Online] Available:
https://www.microchip.com/wwwproducts/en/PIC18F2550. Accessed: 11 Feb 2018

26

http://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct#sect2
http://workplaceohs.com.au/hazards/office-safety/computers
https://www.logitechg.com/en-us/product/g810-orion-spectrum-rgb-gaming-keyboard
http://logickeyboard.com/shop/avid-media-composer-astra-backlit-pc-keyboard-3417p.html
https://superuser.com/questions/690074/what-is-the-power-output-of-a-usb-port
https://www.mouser.com/ds/2/291/NHD-0116DZ-FL-YBW-34847.pdf
http://www.ti.com/lit/ds/symlink/lm317.pdf
https://ece.illinois.edu/admissions/why-ece/salary-averages.asp
https://www.microchip.com/wwwproducts/en/PIC18F2550

[11] microchip.com, “USB MCUs & dsPIC,” [Online] Available:
http://www.microchip.com/design-centers/usb/usb-pic-reg-mcus-dspic-reg-dscs . Accessed: 11
Feb 2018

[12] hades.mech.northwestern.edu, “SPI Communication between PICs,” [Online] Available:
http://hades.mech.northwestern.edu/index.php/SPI_communication_between_PICs
Accessed: 12 Feb 2018

[13] microchip.com, “PIC18F2455/2550/4455/4550 Data Sheet,” [Online] Available/:
http://ww1.microchip.com/downloads/en/DeviceDoc/39632e.pdf Accessed: 11 Feb 2018

[14] picturial.net, “Learn Pic Microcontroller Programming,” [Online] Available:
http://www.pictutorial.net/2016/09/usb-hid-bootloder-for-pic18f-what-is.html Accessed: 16 Feb
2018

27

http://www.microchip.com/design-centers/usb/usb-pic-reg-mcus-dspic-reg-dscs
http://hades.mech.northwestern.edu/index.php/SPI_communication_between_PICs
http://ww1.microchip.com/downloads/en/DeviceDoc/39632e.pdf
http://www.pictutorial.net/2016/09/usb-hid-bootloder-for-pic18f-what-is.html

