
Survivor Identificaiton and Retrieval

Robot

By

Zhijie Jin

Karun Koppula

Zachary Wasserman

Design Document for ECE 445, Senior Design, Spring 2018

TA: Xinrui Zhu

26 February 2018

Project No. 15

Contents

1 Introduction . 1

1.1 Objective . 1

1.2 Background . 2

1.3 High-Level Requirements . 2

2 Design. 3

2.1 Physical Design. 3

2.2 Block Diagram . 3

2.3 Control Block . 3

2.4 Sensor Block. 6

2.4.1 Image Sensor . 6

2.4.2 Distance Sensor . 8

2.5 Motor Block . 8

2.5.1 Motors . 8

2.5.2 Encoders . 9

2.5.3 Motor Driver . 9

2.6 Power Block . 9

2.6.1 Battery . 10

2.6.2 Voltage Regulators . 10

2.7 Manipulator Block . 10

2.7.1 UI Block . 11

2.8 Software Design . 11

2.8.1 RL Exploration . 11

2.8.2 Object Recognition . 12

2.9 Environment. 14

2.9.1 Simulated . 14

2.9.2 Real . 14

2.10 Tolerance Analysis . 14

3 Cost and Schedule . 16

3.1 Cost . 16

3.1.1 Labor . 16

3.1.2 Parts. 16

2

3.2 Schedule . 17

4 Ethics and Safety. 18

4.1 Ethics . 18

4.2 Safety. 18

3

Introduction

Objective

After the Fukushima Daiichi didaster in after a 2011 tsunami, where robotics proved incapable of responding

in disaster scenarios massive amounts of funding has been allocated to solving the problems that prevent

robots from operating in unconstrained and unknown environments. Many teams developed different plat-

forms which have since been used in disaster response situations [6] DARPA, specifically, has a Robotics

challenge that requires robots to perform tasks that might be required in a disaster scenario that include

interacting with objects, maneuvering in uneven and unknown terrain, and even driving a car. Unfortunately

progress in the these directions have not made significant enough progress to be able to reliably use in disas-

ter scenarios. Disaster response robots of a different kind are currently being used, however, as documented

and run by the Center for Robotic-Assisted Search and Rescue. These robots are for the most part human

operated and are limited by human restrictions and the ability to communicate with the operator. Since

these robots are not being used for heavy manipulation, their primary task is to identify humans in danger

as well as dangerous areas. In disaster scenarios, it is often the case where finding survivors is a time critical

operation given their possible medical states. Having an autonomous robotic platform that is onsite and can

immediately begin exploration of the environment would increase the overall response time dramatically. It

would reduce the time that it takes for first responders to arrive on the scene, set up their robotics systems,

and establish safety parameters for operating in the environment. If an autonomous system can do a search

and survey and present accurate information to the first responders, they can act immediately and poten-

tially safe lives.

We envision an implementation of a robotic system that uses reinforcement learning to train how best to

navigate in a maze environment while identifying the positions of survivors and performing a simple retrieval

task. This robot will learn exploration behaviors so that when placed in a new test environment, it can ex-

plore the environment without without explicit retraining on the new environment. We hope to explore

and overcome the obstacles of implementing a reinforcement algorithm on a real world platform, primarily

the amount of noise and stochasticity in the system. We will train an asynchronous n-step, ε-greedy Q

learning algorithm, with an Intrinsic Curiosity Module to generate reward on a simplified version of the

continuous 3-d state space. The Intrinsic Curiosity Module will help the platform to learn basic exploration

techniques so that when it is placed in a new test environment, it is not trying to learn the behvaiors from

scratch. Our hope is to extend the algorithm in future work to take in the image data as input to decide

the action, using advanced machine learning algorithms. We will set artificial constraints on the robot in

alignment with the real world maze environment that we set up for testing and training. The maze will be

a fully connected space with high contrast intersections with differently textured walls. We will develop a

differential drive robot with visual and depth sensors, that is given an occupancy grid of its environment.

It will move through the maze using a set of pre-defined action primitives to unknown survivor positions

and move a simple objects to a goal position. We would like to explore the extension of arbitrary starting

positions if there is time at the end. It will identify and classify these objects using a convolutional neural

net. Once it has identified a retrieval object, it will switch into a retrieval mode from exploration. Using

a simple centering algorithm and a distance sensor, it will move to a position to pick up the object, after

which it will return to the starting position, using information learned about the environment stage from

the exploration phase. We will set environment rewards for the agent for these retrieval tasks, as well as for

1

identifying specific high contrast markers placed on the walls of the maze environment to represent areas of

interest. Since we are limited in scope for this project, we wanted to develop a proof of concept that can be

exteneded in future work to a robotic platform that can operate in real building environments.

Background

In recent years, work has begun on using machine and reinforcement learning techniques to develop robotic

systems that can navigate through a simulated environment using visual and distance data, that eliminates

the need for classical navigation tasks such as localization and trajectory planning. At the 2017 NIPS

conference Pieter Abeel gave a keynote presentation about the use of meta-learning which is an algorithm

that can learn a policy for a reinforcement learning task, referencing work done by Mnih [5] This method

greatly cuts down on the number of training episodes needed to converge to an optimal behavior for each

new environment. It allows the system to generate a general policy for exploration that doesnt overfit to a

particular environment. This presentation inspired this project, but is beyond the necessary requirements

for this project. With classical reinforcement learning, the training will allow the robot to function very

well in a specific environment or on a specific task. Recent research expands this learned exploration

behavior to create policies that can learn general exploration behavior in both high dimnesional state spaces

and continuous action spaces with reasonably bounded training time. This learning resembles the inherent

search behaviors that human beings exhibit without explicit training. Human beings learn this behavior over

the course of a lifetime, using cues and methods that are not available to a robotic platform. The ability

to replicate this behavior in an autonomous platform will come as a huge development in functionality.

Basic AI maze solving algorithms are limited by preset heuristics and unintelligent searches. When the

locations of interest are unknown in an environment that is also not entirely known or non-deterministic, the

applicability and usefulness of these algorithms are reduced. We are leveraging the Intrinsic Curiosity Module

reward function developed by Pathak [?] which learns to avoid maze walls and smoother exploration in a

VizDoom environment while searching for objects of interest. Mnih develops a series of asynchronous policy

learning algorithms that also learn behvaiors in a maze environment with specific environment rewards. These

asynchronous methods provide large reductions in training times in high dimensional spaces. The actor-critic

training algorithm is at the leading edge of progress in this direction. They have been used for manipulations

tasks [7] as well as navigating 3-D mazes in simulation using only visual and depth measurements [4]. If

a robot is trained on a particular building before a disaster, it will be readily equipped for the search on

that building, but practically useless in another environment. We will develop a real world platform that

can function reasonably in and learn to adapt to new environments using adapted versions of cutting-edge

reinforcement learning algorithms.

High-Level Requirements

1. The robotic platform will learn an action policy in a simulated environment that will allow the robot

to explore a maze-like environment.

2. When placed into a novel testing environment, the action-policy will retain exploration behaviors

learned in the testing environment and reduce environment learning time, from naive exploration

learning.

3. The robotic platform will correctly identify the survivor objects in all encounters, pick up and return

it to the pre-specified goal position using information learned about the environment.

2

Design

Physical Design

The physical design of this robotic platform was chosen to minimize the dynamic constraints and associated

challenges. Differential drive robots have a relatively simple set of dynamics and are inherently stable with

the two unactuated wheels. Because of this, we decided to use a tiered approach to component distribution,

which minimizes the physical footprint and allows for a greater safety margin while operating in the maze

environment. Within our performance parameters, we do not expect to run into any situations that would

make the robot uncontrollable. We have decided to place the actuator and environment sensors pointing

forward in the centerline of the robot to align, as close as we can, the coordinate frames of each unit. This

reduces the computational complexity, which is important, given the resources necessary for the sensor data

processing.

Figure 1 shows a physical design. The motors and wheels will be chosen to suit a range of performance

parameters. Because we do not know what the optimal responsiveness of this system in this environment is,

we have chosen an arbitrary desired speed and acceleration at the high end of what we estimate to be the

operable range. The two unlabelled circles in the Bottom View image are the two unactuated ball bearings

that act as rolling supports for the robot. The gripper at the front of the platform will be actuated by two

servos, one used to open and close the claw, and the other used to tilt the claw up and down in order to lift

the goal object.

Figure 2 shows the tiering aspect of the design. This streamlines the connectivity of the platform by moving

the Raspberry Pi closer to the sensors and out of the way of the major power connections between the

motors and controller. Not included in the diagrams are possible wiring holes and access points that could

be included to clean up the appearance of the platform as well as make wiring easier for the group. We will

not permanently mount any of the components into the platform frame, to give us the freedom to interchange

componenets.

Block Diagram

Figure 3 gives a layout of the different modules that are necessary for the robotic platform to function

properly.

Control Block

The control block includes the Raspberry Pi and all of its included functionalities. This includes overall robot

state control, object recognition, and RL exploration algorithms. The Raspberry will completely control the

movements and thinking of the robot.

3

Figure 1: Physical layout of robotic platform.

4

Figure 2: Side view to show tiered layout of components.

Table 1: Raspberry Pi Requirements and Verifications

Requirement Verification

1. RL Exploration
(a) Training time less than 24

hours with appropriately set
episode length and environ-
mental complexity

(b) 10 Hz action calculation cycle

1. RL Exploration
(a) Time training time
(b) Use software timer to calculate

output speed, or check ROS
message publishing rate

2. PID Position Control
(a) Accurate robot center of mass

position control to within 0.2
cm for each action primitive

(b) Rise time of 300 milliseconds,
no overshoot, maximum 0.2
cm steady state error

2. PID Position Control
(a) Measure physical translation

with rule
(b) Tune PID gains in simulation

(Matlab) then apply to robot

Continued on next page

5

Table 1 – continued from previous page
Requirement Verification

3. Forward Kinematics Model
(a) Must predict real-world robot

center of mass translation to
within 0.5 cm for each action
primitive

(b) Must predict real-world robot
center of mass rotation to
within 5 degrees for each ac-
tion primitive

3. Forward Kinematics Model
(a) Measure relative position with

physical ruler
(b) Measure relative orientation

with compass, compare to ori-
entation sensor output

4. Object Detection
(a) 95% accurate object classifica-

tion
(b) Object centroid placement

within 0.5 cm
(c) 10 Hz cycle rate for detection

calculation

4. Object Detection
(a) Test algorithm on multiple in-

stances of real varied objects
and count accuracy, test on
test database of images

(b) Measure projected centroid
position to projected centroid
of object using naive image
processing techniques

(c) Use software timer to calculate
output speed, or check ROS
message publishing rate

5. State Controller
(a) Appropriate control switch

when object is to be picked up
(b) Appropriate switch to ex-

ploitation mode for object re-
turn

5. State Controller
(a) Check control actions after ac-

tivation of detection signal
(b) Monitor state variable for cor-

rect switch

Sensor Block

The sensor block contains all of the sensors that will be used to derive a probabilistic representation of the

current state of the robot in the maze. We will be using a camera and rangefinder/depth sensors as the

primary information sources. The image data will be used to identify features of the maze that can be

correlated to previously knowledge of the environment. It will also be used to identify survivor markings,

goal positions, and the object to be manipulated. The depth measurements provide help with localization

and help to inform the decisions about driving the robot. The robot will also be equipped with pressure

sensors about the body to detect collisions with the maze environment.

Image Sensor

6

Figure 3: Robot Block Diagram with Legend

7

Table 2: Image Sensor Requirements and Verifications

Requirement Verification

1. The camera must be able to com-
municate with the Raspberry Pi

1. Check for and display camera out-
put using Raspberry Pi

2. Must provide RBG color images at
least 10 Hz

2. Time ROS message publishing rate,
display image output

3. Field of view greater than 30 de-
grees

3. Measure with 30 degree angle lines
projected from camera frame of ref-
erence origin and check output to
see if it includes lines

Distance Sensor

Table 3: Distance Sensor Requirements and Verifications

Requirement Verification

1. The distance sensor must provide
distance measurements up to 2m
away with 3mm precision

1. Measure with physical ruler, dis-
tances to objects

2. The measurements must be sent
with at least 10 Hz frequency

2. Check ROS publishing rate for dis-
tance measurement

Motor Block

The motor block consists of the motors themselves, along with the encoders and drivers. This is the entirety

of the locomotive capabilities of the robot. It will be fed control signal from the control block, but will

translate that information into the physical movement necessary to navigate the maze environment. The

motor drivers must provide the correct voltage across the motors and protect them from overdrawing current

and the encoders must provide the controller with accurate information about the position and speed of the

motor.

Motors

8

Table 4: Motor Requirements and Verifications

Requirement Verification

1. The motors must be able to drive
the robot a 0.3m/s at ±10%

1. Use linear velocity measurements to
check speeds, use time and distance
measurements to calculate approxi-
mate velocity

2. Must provide enough torque to
move robot

2. Apply midrange PWM control sig-
nal to motors and check for move-
ment

Encoders

Table 5: Motor Encoder Requirements and Verifications

Requirement Verification

1. Encoders must provide 0.5◦ ± 10% 1. Measure angular displacement us-
ing a compass for a specific input
rotation of 0.5◦

Motor Driver

Table 6: Motor Driver Requirements and Verifications

Requirement Verification

1. The motors must be able to be
driven in both directions at equal
speeds

1. Apply backwards control signal and
measure wheel speed

2. Current draw must be limited to 2.4
A, stall current

2. Clamp motors and set control sig-
nal them while measuring input am-
perage with a multimeter, check for
cutoff

Power Block

The power block consists of the battery and voltage regulators necessary to power all the components onboard

the robot. The battery will be a 3S LiPo battery with 2.2Ah capacity.

9

Battery

Table 7: Battery Requirements and Verifications

Requirement Verification

1. Must stay above 3V per cell during
operation of the robot

1. Measure battery cell voltages con-
stantly during operation using LiPo
voltage alarm

2. Must provide power for continuous
driving session of at least 15 min-
utes

2. Time usable battery time during
real world maze exploration

Voltage Regulators

Table 8: Voltage Regulator Requirements and Verifications

Requirement Verification

1. 6V Voltage Regulator
(a) Must supply constant 6V ±5%

output voltage while the bat-
tery discharges

(b) Must be able to sustain cur-
rents up to 2.4 A

1. 6V Voltage Regulator
(a) Measure voltage output of

voltage regulator over the
course of a fully battery oper-
ating discharge

(b) Clamp motors and drive until
motor driver shutdown, mea-
sure amperage with multime-
ter

2. 5V Voltage Regulator
(a) Must supply constant 5V ±5%

output voltage while the bat-
tery discharges

(b) Must be able to sustain cur-
rents of 1.2 A

2. 5V Voltage Regulator
(a) Measure voltage output of

voltage regulator over the
course of a fully battery oper-
ating discharge

(b) Measure output current when
all peripherals are tied to
Raspberry Pi and running

Manipulator Block

The manipulator block consists of two servos that will be used to grasp and lift the goal object in the maze.

Their actuation will be controlled by another block and their power is also provided by another block.

10

Table 9: Servo Requirements and Verification

Requirement Verification

1. Grasping Servo
(a) Must provide at least 1N ·m to

grasp object to overcome grav-
itational pull

1. Grasping Servo
(a) Grip object above ground level

to make sure that it doesn’t
slip

2. Lifting Servo
(a) Must provide at least 1.5N ·m

to lift gripper, grasping servo,
and object

2. Lifting Servo
(a) Pick up objects with gripper

assembly to test ability to lift
goal objects

UI Block

In order to visualize the state of the robot and its decision making process, we have decided to send back

state information that can be presented on a groundstation computer. This state and decision information

can be presented alongside useful visuals such as optimal navigation decisions at each point of the maze for

different objectives and overhead views of the maze environment.

Since this block only a groundstation computer, the block requirements are simplified to needing a Wi-Fi

enabled computer than can recieve and display information from the Raspberry Pi and activate the robot’s

maze exploration over SSH protocol.

Software Design

We will use a ROS framework for our robotic platform running on the Respberry Pi. Through this, we

can leverage the many libraries that are available for robotic control as well as the various python libraries

that can be used. We will use the Tensorflow library to train and test all of our neural networks, for

both exploration and object detection purposes. We will use OpenCV for image preprocessing and object

detection verificaiton. We will use the OpenAI Gym environment with the Gazebo simulations to train the

exploration. Sensor inputs will be sent to the Raspberry Pi. The two seperate algorithms, exploration and

object detection, will be running simultaneously using different sets of inputs provided to the Raspberry Pi.

We will implement a two-state system that switches into object retrieval mode when it recognizes an object.

It will move towards and pick up the object by centering the object centroid in the image and using the

distance sensor to approach it. The robot will then use information it has learned about the environment in

the exploration phase to return the object to a goal state, by setting the goal state as the destination. After

retrieval, it will either return to exploration with a limit on episode length or terminate function.

RL Exploration

We will used a multi-agent asynchronous update n-step Q learning algorithm to train the exploration algo-

rithm on our test environments, it will take the vehicle position, orientation, relevant distance measures, and

a subsampled subsection of the input image as the state parameters. We will use the ICM reward function

in addition to specific environemental rewards such as penalizing proximity and rewarding finding the pre-

placed markers and object retrieval. We will train the algorithm using the OpenAI Gym Maze environment

11

Figure 4: The overall system architecture.

with multiple concurrent agents exploring the state space with asynchronous updates on the model. The

model will based on a set of action primitives, do nothing, move forward by an incremental amount, or turn

in either direction by an incremental amount. We can use a simple forward kinematics model with each

action with verification provided by the control system run on the MCU using the motor encoders. We

will not have a global positioning system provided that can account for wheel slippages, but since we are

constraining the environment we will assume that this will not occur in a great amount and that the other

state values will provide a sufficient check on position error.

The state transition is further specified by Figure 6. We use a forward kinematics model of the robot to

predict the next pose of the robot, given the action primitive chosen from the previous state. This model

cannot account for possible slippages in the wheels, or environmental disturbances to the robot, because we

dont have a valid measurement for global position. If we did, we could use Kalman Filtering to establish

a converging estimate of the position and use that in each state. Since we expect the end-goal of this

work to search in GPS-denied environments and without motion capture systems, we want to remove the

dependence on learned search behaviors from exact position mappings as much as possible. We also want

the learned behaviors to be portable to a new maze environment. The ICM research uses only image data

in their simulated testing of the algorithm, but we expect that environment noise will necessitate the use of

estimated state [?]. Fortunately with appropriate constraints on the environment, we can reduce slippages

and disturbances to minimize this effect.

Object Recognition

To recognize the objects of interest, we will preprocess the images provided by the image sensor by truncating

the image provided by the RPi camera to the region of interest and downsample (if appropriate) to a smaller

size input image for the convolutional neural net. We will use a Single-Shot Detector algorithm to identify

and locate the object in the image. Implementability is simplified with examples from the TensorFlow

Object Detection zoo. We will need to train our net on images of our object, however, which will require an

extensive, labeled data set of images of the object. We will choose the object based on available data sets

or the difficulty of creating our own image set.

12

Figure 5: This flowchart shows how the reward is calculated using forward and inverse state transition
models.

Figure 6: The state transition of the system, given some action primitive at

13

Figure 7: Overview of Single-Shot Detector Algorithm

Environment

Simulated

We will be using the OpenAI gym extension with Gazebo simulation to develop and visualize the maze

environment. Unlike the image, our maze environments will not be loops, but will be fully connected with

room-like features. We will also increase the wall contrasts and experiment with additional features and

texturing on the walls to decrease correlation between states. We can create a simulated robot using the

Gazebo software package that includes all of our real world peripherals. Since all of our functionality will be

written in ROS using python, it is an ideal simulation and training environment.

Real

For testing and demonstration purposes, we will need to develop a real maze environment that mimics to a

high degree the type of maze that we used in simulation. We will be using tape wrapped bricks to create a

modular system for making mazes. We will color the faces of the bricks with colored paper to provide visual

markings for the robot. The base will be made of plywood to provide a low-slip surface for driving on.

Tolerance Analysis

There exists a large amount of uncertainty in building the robot to navigate through a maze and retrieve

objects. There are some negligible errors from resistors, sensors, and pcb board. For example, the range

of error for the ultrasonic sensor is approximately around 2mm. If we were to try and find the distance of

something about 5 meters away, that would mean that at worst we would have a .04% in our measurement.

This is not significant enough to effect the distances at which the robot would observe walls or objects.

However, there are also errors that we must to take into consideration when building the robot. Encoder

and servo precision might be the main sources of error for out robot. Encoders that come with the motors

might have low accuracy. Therefore, in order to minimize the error, encoders first need to be calibrated.

After calibration, there errors still occur, we would put markers in the maze to help robot to locate itself.

Based on the encoder data and markers in the maze, we can get more accurate position of the robot. Another

big error issue may comes from servo precision and camera quality. Errors caused by servo accuracy and

fishbowl effect may cause to grapper deviate from desired position. However, we are able to reduce error

from servo and camera using some algorithms.

14

Figure 8: Simulated Maze Environment

15

Cost and Schedule

Cost

Labor

We calculate that our fixed labor costs over the course of the semester will be

3 · 35
$

hr
· 12

hr

wk
· 16wk · 2.5 = $50, 400

Parts

Following is a starter table for parts costs. Add cell contents as well as rows and, if necessary, columns.

Update the table number according to your sequence. Note that columns 1 and 2 are set up for centered

text (words) and columns 3∼5 (numbers) are set up for right-alignment so that decimal points align.

Table 10: Parts Costs

Part Manufacturer Retail Cost

($)

Bulk

Purchase

Cost ($)

Actual Cost

($)

99:1 Metal Gearmotor Pololu 34.95 31.46 69.9

Universal Mounting Hub Pololu 6.95 6.12 6.95

11.1V LiPo Battery Pack Turnigy 10.99 10.99 10.99

HS-422 Servo Motor RobotShop 11.49 11.03 22.98

Large Robot Gripper RobotShop 19.50 18.92 19.50

Raspberry Pi Amazon 42.99 42.99 42.99

Raspberry Pi Camera Amazon 26.44 26.44 26.44

Ultrasonic Sensor EMakeFun 9.99 9.99 29.97

Motor Driver (DRV8835) Texas Instruments 1.80 1.80 1.80

32 GB MicroSD Card Amazon 13.88 13.88 13.88

Total 245.4

16

Schedule

Schedule

Week Karun Koppula Zachary Wasserman Zhijie Jin

2/12 Research project implemen-

tation ides

Begin looking into algorithms

and simulations. Code par-

tial of simulation

Research voltage regulators

2/19 Create algorithmic workflow

for Design Document and

write design doc

Prepare report and research

OpenAI gym for robot simu-

lation purposes

Research Battery Packs and

voltage requirements for

parts

2/26 Order Parts, Write n-step Q

learning algorithm, and set

up ROS framework on RPi

Prepare OpenAI gym simu-

lation environment for robot,

look into SDD implementa-

tion examples

Design PCB for voltage regu-

lators and motor controllers

3/5 Write ICM and run training

set

Write and train SSD algo-

rithm on generic data set pro-

vide

Give parts and specifications

to Machine Shop

3/12 Create simulated robot and

environment, adapt ICM to

robot specific state

Develop object data set and

train SSD on image set

Develop Forward Kinematics

model for action primitives

3/19 Spring Break Spring Break Spring Break

3/26 Continue to develop robot en-

vironment in simulation

Testing SDD object recogni-

tion on RPi using RPi camera

Robot Assembly, funcitonal-

ity verification, develop PID

control for motors

4/2 Parallelize processing capa-

bility on the Pi, train full ex-

ploration algorithm in simu-

lation and test performance

in real maze, and maze as-

sembly

Develop robot state con-

troller, object pick-up proce-

dure, and maze assembly

Object pick-up procedure and

maze assembly

4/9 Test Robot exploration abil-

ities experiment with hyper-

parameters

Develop and test robot return

to goal with picked up object

Test and optimize robot state

control

4/16 Experiment with perfor-

mance, debug

Debug all systems Debug all systems

4/23 Train robot for demonstra-

tion, write final paper

Write final paper Write final paper

4/30 Finish final paper and demon-

stration

Finish final paper and demon-

stration

Finish final paper and demon-

stration

17

Ethics and Safety

Ethics

We believe that our project is aligned with the first tenet of the IEEE Code of Ethics, to hold paramount

the safety, health, and welfare of the public, [2] because our project is designed to help move robotic un-

derstanding of real world systems towards the ability to save lives. We strive to use the understanding of

intelligent systems to benefit the public good. This leads to the importance of #5 of the Code, to improve

the understanding by individuals and society of the capabilities and societal implications of conventional

and emerging technologies, including intelligent systems [2] in that it will be our duty to inform the public

about the beneficial uses of the technology that we are working with and how they can be further used to

help society. Since the success of the project is directly dependent on the functionality of the reinforcement

learning algorithm, it is very important that we accurately report our results, regardless of the outcome.

Inconsistent data and unreliable reporting would violate #3 of the Code [2] and would negatively impact

the field of robotics research and our character as engineers. In the same vein, it is very important that we

give appropriate credit for the previous works that we use and build on to develop our system. It would be

unethical to take credit for the work of others in accordance with #7 of the Code [2]. We will be using and

learning from many different research sources as well as from our peers and faculty members as we progress

through this project and need to accurately present the chain of knowledge and development.

Safety

The major safety consideration of this project resides in the safe operation and storage of the battery. LiPo

batteries can be dangerous if used improperly. They do generate heat during high-load discharge, which we

must monitor throughout robot operation. We possess an industry approved LiPi charger and balancer for

charging and discharging operations. We will, however, still be careful to not work alone while batteries

are in operation. Since our group has little experience with building and designing circuits, we will have to

be especially careful when designing and testing our custom printed PCB that contains the MCU, motor

drivers, and voltage regulators. Voltage regulators can dissapate a lot of heat as well, so we must ensure

that appropriate heat dissapation is provided to the circuits and other components. Short circuits, fires, and

electricution are all possible safety hazards when working with these materials, so we will take standard lab

safety precautions, as well as asking for input from the course staff and other experienced personnel.

18

	Introduction
	Objective
	Background
	High-Level Requirements

	Design
	Physical Design
	Block Diagram
	Control Block
	Sensor Block
	Image Sensor
	Distance Sensor

	Motor Block
	Motors
	Encoders
	Motor Driver

	Power Block
	Battery
	Voltage Regulators

	Manipulator Block
	UI Block

	Software Design
	RL Exploration
	Object Recognition

	Environment
	Simulated
	Real

	Tolerance Analysis

	Cost and Schedule
	Cost
	Labor
	Parts

	Schedule

	Ethics and Safety
	Ethics
	Safety

