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1 Introduction 
 
1.1 Objective 
 

Our design seeks to enable a human user to convert live “beatboxing” performance into              
real-time physical performance by a robot. As such, our design is best thought of as               
musical instrument in its own right: when “played” as intended, our design will respond              
by instructing a robot drummer to strike the corresponding drum kit component. Correctly             
“playing” our system amounts to the human user constraining their vocal performance to             
a subset of sounds which can be identified as comprising traditional “beatboxing” (see             
Background below for elaboration). This mapping of performative sounds to the correct            
corresponding robotic performance comprises the core challenge of our design. 
 
Our design is distinct from existing designs which similarly process “beatboxing” into            
equivalent musical forms, as these existing systems typically only convert recordings of            
“beatbox” performance into drum samples for music production; prime examples include           
“The Beatbox Machine” [1] and “Vocal Beater” [2]. As such, these existing systems are              
purely software-based and non-real-time, whereas our design will feature real-time          
performance, driven by hardware-software embedded systems. 
 
One possible social application for our system, which is not met by these other existing               
systems, is the capacity for persons with mobility restrictions of their extremities to be              
able to participate in live music performance, in a manner consistent with typical rock              
music performance. 

 
1.2 Background 
 
1.2.1 What is Beatboxing? 
 

“Beatboxing” refers to the practice of emulating conventional percussion musical          
instruments with only one’s mouth, and typically incorporates a voice microphone and            
amplification system. Correct beatboxing would be characterized by a vocal performance           
that approximates or imitates conventional percussion instrument to a sufficient degree           
of fidelity that the performance could substitute the drum track in lieu of the actual               
instruments: 
 

When MCs starting to rap over drum machine (beat box) beats in the             
urban communities of New York City, especially in the Bronx, drum           
machines and synthesizers were not very affordable. Samplers were well          
out of reach even for well-paid musicians. 
Necessity is the mother of invention, and without machine-supplied beats          
to rap over, a new, more accessible instrument was adopted - the mouth -              
and thus human beatboxing was born.  [3] 
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In this respect, our design “completes the circle,” by using the imitative human             
performance to play the very instrument they are attempting to emulate. 

 
1.2.2 What is “real-time”? 
 

To have a meaningful claim as to whether or not a device performs in “real time”                
depends largely on the context of use. In the case of music and musical instruments, this                
could pertain to either the perceptions of the performer, of the audience, or both.  
 
In the ideal world our device could reach instantaneously, but given real world             
constraints imposed by processing time and computational complexities required, some          
degree of latency cannot be avoided; this is just as true of existing technologies in the                
world of music, such as MIDI, whose degree of latency can vary widely [4]. This has                
clearly not prevented MIDI-controller based electronic instruments from being used, so           
the question is how much latency is too much? Can we find a metric for a seemingly                 
subjective question?  
 
To answer the question of how to base the standard we decided to use visual perception                
as our basis, given that it is the observable reaction of the robot that ultimately dictates                
the perception of lag (sound propagation from the drum-head will be negligibly delayed             
after strike). As such, we propose using the International Telecommunication Union’s           
Recommendation ITU-R BT.1359-1 threshold of acceptability of 185 msec [5]. 

 
1.3 High-Level Requirement 
 

1) Device must be able to receive beatbox audio input from a human user/performer and              
distinguish between 3 different key sounds. This implies that there are 4 valid inputs in               
total: clap, snare, bass kick, and no input. 

2) Device must be able to perform requirement (1) in real-time (defined as above in the               
Background section 1.2.2 as ≤ 185 msec) and drive a machine based on said inputs. 

3) The machine will have 3 drums, one for each input, and will strike the correct drum which                 
corresponds to its input, with a measurable sound-pressure intensity above 40 dBA. 
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2 Design 
 
2.1 Block Diagram 
 

Figure 2.1 provides a graphical depiction of our complete system from a high-level             
perspective, detailing the functional constituent components of each sub-block and the           
nature of their connections. 
 
In summary, the Power Subsystem converts AC mains power to 12V DC, which is further               
stepped-down to 3.3V for the DSP Subsystem. A Linear Regulator ensures power            
remains within spec for the DSP block, and Circuit Protection A handles the induction              
effects of the solenoid drives. 
 
The Input Subsystem is comprised of a series of sub-blocks which take the analog signal               
generated by the Microphone (a voltage level) and applies filtering and amplification to             
both clean-up the signal as well as boost it, so that a better quality signal may be                 
captured by the DSP sub-block’s ADC function. 
 
The Control Subsystem contains the DSP sub-block, whose principal tasks involve the            
analog-to-digital conversion of the Input subsystem’s output signal, processing of the           
digitized input, and subsequent response to qualifying stimulus by providing the trigger            
signals to the Electromechanical Conversion Subsystem. These output signals pass          
through Circuit Protection B, which protects the DSP block from any possible back emf              
from the solenoid drives. 
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Figure 2.1: System Block Diagram 
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2.2 Block Design 
 
2.2.1 Power 
 

Functional Overview 
 
This block contains two power converters and a AZ1117E 3.3V linear regulator. The first              
converter is of the low power AC/DC 120V/12V type. The second converter is of high               
power AC/DC 120V/12V type and is used to supply power to the solenoids. The purpose               
of this block is to supply power and provide protection to the circuit. The protection               
comes by means of a fuse. 

 
Requirements and Verification 

 

Requirement Verification 

Requirement 1 
Low-powered power converter 
supplies 12V output with ±250mV, 
when supplied with 120VAC 
source.. 

Equipment: 
1) 120V power mains source. 
2) Breadboard 
3) Oscilloscope 

 
Procedure: 

1) Assemble circuit 
2) Plug in the mains power 
3) Measure output voltage on oscilloscope 

 
Expected Result: 
We should see an output voltage of 12V 
±250mV.. 

Requirement 2 
Linear regulator supplies 3.3 VDC 
output, within ±10%, when 
supplied with 12 VDC input 

Equipment: 
1) Power supply 
2) Oscilloscope 

 
Procedure: 

1) Use the power supply to supply 12VDC to 
the linear regulator 

2) Probe the output voltage of the linear 
regulator 

3) Check the DC value and ripple on the 
oscilloscope 

 
Expected Result: 
The output of the linear regulator should be 3.3V 
with peak-peak ripple less than ±10%. 
Table 2.1: Power supply requirements and verifications. 
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Supporting Materials 
 
Schematics 

 
Figure 2.2: Power supply. AC/DC converters and linear regulator. 

 
2.2.2 Microphone to Pre-Amp 
 

Functional Overview 
 
The microphone pre-amp is a 2-stage op-amp circuit which takes mic-level input from             
the Behringer Ultravoice XM8500 microphone (or comparable device), and amplifies the           
signal to line-level. The purpose of this amp is to raise the voltage level before it goes                 
into the filter so that the filter will not significantly raise the SNR, and also to raise the                  
signal amplitude before it goes into the ADC. The pre-amp circuit is comprised of LM741               
op-amps and a resistive and capacitive network, as detailed in Figure 2.3. 
 
Requirements and Verification 

 

Requirement Verification 

Requirement 1 
Amplifier has a voltage gain 
of 63dBV ±1.02% from 
1mV input while loaded 
with filter. ±1.02% was 
chosen to prevent ADC 
saturation. 

Equipment: 
1) Breadboard 
2) Power supply 
3) Oscilloscope 
4) Signal generator 

 
 
Procedure: 

1) Setup circuit with filter load 
2) Power circuit 
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3) Apply Signal generator sinusoidal input of 1mV 
amplitude to the amp 

4) Observe FFT 
5) Record the gain at input frequency 

 
Expected Result: 
If we apply a 1kHz sinusoidal input, then we should see 
a gain of 63dBV ±5% at 1kHz. 

Requirement 2 
Amplifier meets 
requirement 1 from 200Hz 
to 10kHz. 

Repeat requirement 1, but sweep through frequencies 
at intervals of 1kHz. 
 

Table 2.2: Amplifier requirements and verifications. 
 

Supporting Material 
 

Schematics 

 
Figure 2.3: Microphone Pre-Amp Schematic 

Simulations 
 
Figure 2.4 below was simulated in LTspice with ideal resistors, capacitors, and sources.             
We used TI’s LM741 op-amp Spice model in the simulation. The plot shows the voltage               
gain and group delay at the output. The units for gain are in dBV where the reference                 
voltage is 1V. 
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Figure 2.4: Voltage gain and group delay of amplifier from 1 to 10kHz. 

 
Calculations 
 
Both stages of the amplifier are identical, where each stage is configured as an inverting               
op-amp. The inverting op-amp has a voltage gain of: 
 

(2.1)  7.4 V VV in

V out =  − Z in

Z feedback = 23k
860k = 3 /  

 

Z feedback = 860kΩ, and Z in = 23kΩ. If we assume the capacitors couple AC signals well,                
then each stage has a voltage gain of 37.4, which corresponds to a dBV gain of: 
 

(2.2) ain[dBV ] 0log( ) 0log(37.4) 1.5dBVg = 2 1
V out = 2 = 3  

 

Then the total gain of the 2-stage amplifier is: 
 

(2.3) ain ain ain 1.5 1.5 3dBVg 2 stage− = g 1,dBV + g 2,dBV = 3 + 3 = 6  
 

The ADC input requires a max signal amplitude of 1.6V, we have designed our amplifier               
to output a max signal amplitude of 1.5V from a 1mV input. We measured our               
microphone output signal amplitude to be 1mV from human beatbox input. This            
difference in amplitude requires a voltage gain of: 
 
(2.4) ain 0log( ) 3.5dBVg desired = 2 1.5

.001 = 6  
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2.2.3 Filter 
 

Functional Overview 
 
We have designed a 5-stage low-pass Butterworth filter using Texas Instrument’s           
Filterpro design software [6]. It receives analog input from the audio pre-amp, and             
outputs the filtered signal to the DSP block for analog to digital conversion. It is a tenth                 
order Sallen-Key design with non-inverting gain.  
 
In designing the filter a couple of features were desired. An essential design requirement              
was the post-sampling preservation of the 0-10 kHz range, as preliminary testing has             
shown all our desired sounds will occupy this frequency range. To accomplish this task              
we required a filter with unity gain and linear phase throughout the passband.  
 
The butterworth filter is a common choice for maximally flat gain in the passband, though               
it does present nonlinear phase near the edge of the passband. Noting that our analog               
to digital conversion will be occuring at a sampling frequency of 44.1 kHz, we decide to                
move our cutoff frequency to 23kHz (the -3dB point of the filter). This aided in dragging                
out our linear phase through most of the 0 to 10kHz frequency range, though some               
‘slight’ nonlinearities still exist. Erring on the side of caution, we defined 33 kHz to be our                 
band limit frequency. It corresponds to a gain of -30dB. With this definition, sampling at a                
rate of 44.1kHz result in no aliasing in the critical 0-10 kHz range. It should be noted that                  
if we define our max sampling frequency to be fs , a bandwidth of up to 34 kHz         4 kHz  ≈ 4         
is permissible, any greater and aliasing will occur in our 0 to 10 kHz range. 

 
Requirements and Verification 

 

Requirement Verification 

Requirement 1 
The filter passes all 
frequencies in the 0 to 
10,000Hz range with 
minimal amplitude 
distortion. 
Passband Deviation from 
unity gain< %10±  

Equipment: 
1) Breadboard 
2) Function generator 
3) Oscilloscope 
4) Power Supply 

 
Procedure: 

1. Assemble low-pass filter circuit on  breadboard. 
2. Using a splitter connect the function generator to 

both the input of the circuit and input channel 1 
one of the oscilloscope. Then connect the output 
of the filter circuit to to oscilloscope. 

3. Apply power to the circuit, and use the function 
generator to generate a sinusoidal signal. Apply a 
frequency sweep to the filter by adjusting the 
frequency of of the sinusoid and recoding the 
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result of the output amplitude. Do this for all 100 
Hz increments from 0 to 10,000Hz. 

 
Expected Result: 
The filter should pass the sinusoidal input to the output 
relatively unaltered in magnitude (original input amplitude 

)10  ± %  

Requirement 2 
Near linear phase shift of 
the output signal. 
 
 

Equipment: 
    1) Oscilloscope  
    2) Breadboard 
    3) Power Supply 
    4) function generator 
 
Procedure: 

1. Assemble low-pass filter circuit on  breadboard. 
2. Using a splitter connect the function generator to 

both the input of the circuit and input channel 1 
one of the oscilloscope. Then connect the output 
of the filter circuit to to oscilloscope, channel 2. 

3. Apply power to the circuit, and use the function 
generator to generate a sinusoidal signal. Apply a 
frequency sweep to the filter by adjusting the 
frequency of of the sinusoid and recoding the 
unwrapped phase shift, as well as the input 
sinusoid’s frequency. Do this for all 100 Hz 
increments from 0 to 10,000 Hz 

4. Plot the phase shift in radians vs the frequency in 
Hz and perform a linear fit. Ensure the Coefficient 
of Determination, is greater than .8. R2  

  
 
Expected Result: 
A linear plot implies a constant time shift for all 
frequencies in the 0 to 10kHz range, and thus no 
distortion of the signal. This is a result of the time delay 
property[7]: 
 

[x(t )] X(jω)e  F − to =  jωto  
 
The plot should match very closely to the LtSpice 
simulation results of figure 2.9 [8]. Exact degrees of delay 
are unimportant, as long as the resulting plot is linear. 

Table 2.3: Requirements & Verification 
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Supporting Materials: 
 
Schematics and Block Diagrams: 

 
Figure 2.5: Filter Sub-Block Internal Block Diagram 

 

 
 

Figure 2.6: Filter Stage Schematic 
 

Stage R1 R2 R3 R4 C1 C2 

1 4.3 kΩ 9.1 kΩ 330 kΩ 330 kΩ 1.2 nF 1nF 

2 3.6 kΩ 8.2 kΩ 330k 330k 1.5 nF 1nF 

3 3.3 kΩ 6.2 kΩ 330k 330k 2.2 nF 1nF 

4 2 kΩ 4.3  kΩ 330k 330k 5.6 nF 1nF 

5 680 Ω 1.5 kΩ 330k 330k 47 nF 1nF 

  

Table 2.4: Filter Stage Schematic Legend 
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Performance Projection Plots: 

 

 
Figure 2.7: Filter Magnitude and Phase Response (via FilterPro software) 

 

 
Figure 2.8: Group Delay (via  FitlerPro software) 
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Figure 2.9: Filter Magnitude (solid) and Phase Response (dashed) 0 to 10kHz (via LTspice software) 
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Calculations: 
 
Permissible  bandwidth postfiltering: 

 
The signal needs to be filtered in such a way as to avoid aliasing when sampled. 
 

(2.5) s 4kHz  f = 4  
 

Max resolvable frequency after sampling, 
 

(2.6)  req fs 2 22kHz  f max =  / =   
 

In  discrete frequency , spectral copies occur every , where  corresponds to theπ  2 π  
original   analog frequency  of the spectral copy centered at the origin.2kHz  2  
The spectral copies can encroach up to the 10kHz point of the origin centered spectral 
copy. 
 

(2.7) 2kHz 10kHz 12kHz  2 −  =   
 

Thus our signal must bandlimited to 
 

(2.8) 2kHz 0kHz 34kHz  2 + 1 =   
 
2.2.4 DSP 
 

Functional Overview 
 
The DSP block will be comprised of a Teensy 3.6 board, which will sample the amplified                
and filtered microphone analog voltage signal via its ADC pins. The software routines             
outlined below will utilize this data for the purpose of 1) applying additional digital filtering               
techniques to further refine the digitized time-domain signal; 2) using time-domain and            
frequency-domain analysis to characterize the input; 3) apply event detection algorithms           
to map the input to an output trigger stimulus.  
 
We chose the Teensy 3.6 because: 1) it can be programmed in C/C++, unlike              
conventional DSP chips which often require programming in proprietary assembly          
languages, which would require an investment of time to learn; 2) the Teensy can be               
programmed using a straightforward IDE; 3) the Teensy supports FFT C libraries; and             
lastly 4) the Teensy can be mounted to the main system PCB via header-pins allowing               
both quick replacement in case of accidental blow-out, and software development in            
parallel, separately from other aspects of the design development and fabrication. 
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Requirements & Verification 
 

Requirement Verification 

Requirement 1 
 
DSP (Teensy 3.6) will 
maintain function within 
range ±10% of 3.3 VDC (3.0 
VDC to 3.6 VDC)  

Equipment: 
1. DC Power Supply (x1) 
2. Digital Multimeter (x2) 
3. Arduino IDE 
4. Test Program “test_vin_performance.ino” 

 
Procedure: 

1. Load “test_vin_performance.ino” into Teensy 
3.6 via Arduino IDE. 

2. Disconnect Teensy board from Computer (i.e. 
disconnect VUSB) 

3. Power Teensy board with 3.0 VDC 
4. Probe Vin and output pin 14 
5. Sweep DC source voltage from 3.0 to 3.6 VDC. 

 
Expected Result: 
The output pin will continue to hold digital high level 
signal at Vin, within same tolerance range.  

Requirement 2 
 
DSP (Teensy 3.6) will 
register from 0.0 V to 3.0 V 
(±10%) and articulate these 
values to 13-bit precision. 

Equipment: 
1. Power Supply (x1) 
2. Arduino IDE 
3. Test program “test_adc_performance.ino” 

 
Procedure: 

1. Load “test_freq_performance.ino” into Teensy 
3.6 via Arduino IDE. 

2. Run program with Serial Monitor open. 
3. Set Power Supply to 0.0 VDC and connect to 

anode to pin 16 (a.k.a. A2) and cathode to 
analog ground. 

4. Sweep the voltage level to 3.3 VDC. 
 
Expected Result: 
Serial monitor read-out from test program will display 
the 13-bit quantized digital value on a 0 to 8191 scale. 
As the program uses the default reference voltage 
level of 3.3 V, at 3.3 V the value read should be within 
-10% of 8191. At 1.5 V, the value should be within 
±10% of 3723. 

Requirement 3 
 
For low frequencies: 

Equipment: 
1. Function Generator (x1) 
2. Arduino IDE 
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DSP (Teensy 3.6) will 
register frequency 
distinctions of one octave of 
1 kHz (half the frequency 
below at 500 Hz, twice the 
frequency above at 2 kHz), 
within a range of ±10% of the 
boundary frequencies. 
 
 

3. Test programs “test_low_freq.ino” 
 
Procedure (Low Frequency): 

1. Load “test_low_freq.ino” into Teensy 3.6 via 
Arduino IDE. 

2. Run program with Serial Monitor open. 
3. Set Function Generator to 1.2 Vpp, +0.6V 

offset, sine wave, and connect to pin 16 (a.k.a. 
A2) on the board. 

4. Set frequency to 1000 Hz, and observe the 
Serial Monitor read-out. 

5. Set the frequency to 500 Hz and pan the 
frequency ±50 Hz, observing the read-out. 

6. Increase the frequency to 2000Hz and pan the 
frequency ± 200 Hz, observing the read-out. 

 
Expected Result: 
Bin 1 (second from left) should show a peak value 
10% larger than its neighbors, and no peaks anywhere 
else. 
The lower octave frequency should peak in Bin 0, and 
the peak should not stray into Bin 1 as the frequency is 
panned. 
The higher octave frequency should peak in Bin 2, and 
should not stray into Bin 1 as the frequency is panned. 

Requirement 4: 
 
For high frequencies: 
DSP (Teensy 3.6) will 
register frequency 
distinctions of 40 Hz ±10% in 
the frequency band 
approaching the Nyquist 
rate, taking 20 kHz as a 
conservative cut-off 
frequency.  
 

Equipment: 
1. Function Generator (x1) 
2. Arduino IDE 
3. Test programs “test_high_freq.ino” 

 
Procedure (High Frequency): 

1. Load “test_high_freq.ino” into Teensy 3.6 via 
Arduino IDE. 

2. Run program with Serial Monitor open. 
3. Set Function Generator to 1.2 Vpp, +0.6V 

offset, sine wave, and connect to pin 16 (a.k.a. 
A2) on the board. 

4. Set the Frequency to 20 kHz, and observe the 
read-out. 

5. Pan the frequency ±10 Hz, observing the 
read-out.  

6. Increase the frequency to 20040 Hz, and pan 
±4 Hz observing the read-out. 

7. Decrease the frequency to 19960 Hz, and pan 
±4 Hz observing the read-out. 

 
Expected Result: 
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Bin 2 should output a peak value 10% larger than its 
neighbors, and no peaks anywhere else. 
Increasing the frequency should move the peak right 
one bin from Bin 2, and the peak should not stray into 
Bin 2 as the frequency is panned. 
Decreasing the frequency should move the peak left 
one bin from Bin 2, and the peak should not stray into 
Bin 2 as the frequency is panned. 

 
Table 2.5: DSP Requirements and Verification 

 
Supporting Materials: 

 
Algorithm: 

 
We recorded the target sounds and generated a spectrogram to facilitate preliminary            
analysis of the data sets we’d be working with. It revealed that each sound is spectrally                
discernible in the 0 to 10kHz frequency range and distinct from one another, as shown               
below in Figure 2.1. 

 
Based these preliminary findings, our algorithm will use the following features for            
determining whether a valid input has been issued on not (i.e. “event detection”): 
 
From the analog input pins, the ADC functionality of the Teensy 3.6 will allow us the data                 
needed to compute a 1024-point FFT. We will truncate this to the lower 256 bins               
(representing 0 to 11 kHz), from which we derive their magnitude, and in turn calculate               
the total energy for that frequency band. At this juncture, we will check for a               
voiced-threshold (to be determined experimentally); if it is voiced the algorithm           
continues; if it is not, it loops back to acquire updated input data. 
 
In either case, the algorithm checks for an event flag; a variable which tracks the state of                 
the system, whether an event is occurring or not. If the algorithm does not detect a                
voiced threshold and the event has been asserted, it will deassert it; a transition which               
marks the end of a valid sound event. If the algorithm does detect a voiced threshold, it                 
checks the state of the event flag: if it is asserted, it loops back to start, representing                 
acknowledgment that the valid event is still underway; if it is not asserted the algorithm               
progresses to the characterization and comparison phase of its operation. 
 
Upon a new voiced event, the frequency bin corresponding the average energy is             
identified and added to a circular event buffer. From this buffer a running average of their                
entries is compared to a series of reference values, one for each valid sound. If this                
average is within a radix of 5 bins (approximately 215 Hz) then the corresponding digital               
trigger pulse is issued to the solenoid driver. In either case, the event flag is asserted. 
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Our preliminary algorithm for event detection is shown in flowchart format below in             
Figure 2.3.4b for visual reference. 
 

 
Figure 2.10: Spectrogram of Sample Beatbox Sounds. 
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Figure 2.11: Algorithm Flowchart 

 
Requirement and Verification Test Code: 
 
The test code given below is based off of example code provided by the manufacturer of                
the Teensy, as no explicit testbench code was available for our specific needs. 
 
“test_vin_performance.ino” is modeled after the Requirement 3 drafted by Team 1 of the             
Fall 2017 ECE 445 Class for their Microcontroller Requirement & Verification. [9] 
 
“test_adc_performance.ino” is based off of the “Tutorial 4: Analog Input” tutorial on            
PJRC.com [10]. 
 
“test_low_freq.ino” and “test_high_freq.ino” are based off of the example code that           
PJRC.com’s proprietor, Paul Stoffregen, provided for the Teensy’s basic FFT          
functionality. [11] 
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/* 
 * TEST VIN PERFORMANCE 
 * for R & V 
 */ 
  
int output_high = 14; 
int output_low = 15; 
 
// the setup routine runs once when you press reset: 
void setup() {  
  // initialize the digital pin as an output. 
  pinMode(output_high, OUTPUT); 
  pinMode(output_low, OUTPUT);  
} 
 
// the loop routine runs over and over again forever: 
void loop() { 
  digitalWrite(output_high, HIGH); 
  digitalWrite(output_low, LOW); 
  
} // END PROGRAM 

 
 

/* 
 * TEST ADC PERFORMANCE 
 * for R & V 
 */ 
 
void setup() { 
  
  analogReadResolution(13); 
 
} 
 
int val; 
 
void loop() { 
  
  val = analogRead(A2); 
  Serial.print("analog ADC_A2 is: "); 
  Serial.println(val); 
  delay(250); 
 
} // END PROGRAM 

 
 

/*  
 * TEST LOW FREQ 
 * for R & V 
 */ 
 
#include <Audio.h> 
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#include <Wire.h> 
#include <SPI.h> 
#include <SD.h> 
#include <SerialFlash.h> 
 
AudioInputAnalog         adc1;  
AudioAnalyzeFFT256       myFFT;  
AudioConnection          patchCord1(adc1, myFFT); 
 
// FFT Bins (Lower fourth of FFT) 
float freqBands [16]; 
float freqBins_463_467 [5]; 
 
void setup() { 
 
  // Allocate memory for Audio: 
  // Input param corresponds to sample size, 
  // so for 13-bit ADC, array size must be [0, 12] 
  AudioMemory(12); 
 
} 
 
void loop() { 
 
  // Get FFT output to capture bins: 
  if(myFFT.available()){ 
 
    freqBands[0] = fft256_1.read(0, 3); 
    freqBands[1] = fft256_1.read(4, 7); 
    freqBands[2] = fft256_1.read(8, 11); 
    freqBands[3] = fft256_1.read(12, 15); 
    freqBands[4] = fft256_1.read(16, 19); 
    freqBands[5] = fft256_1.read(20, 23); 
    freqBands[6] = fft256_1.read(24, 27); 
    freqBands[7] = fft256_1.read(28, 31); 
    freqBands[8] = fft256_1.read(32, 35); 
    freqBands[9] = fft256_1.read(36, 39); 
    freqBands[10] = fft256_1.read(40, 43); 
    freqBands[11] = fft256_1.read(44, 47); 
    freqBands[12] = fft256_1.read(48, 51); 
    freqBands[13] = fft256_1.read(52, 55); 
    freqBands[14] = fft256_1.read(56, 59); 
    freqBands[15] = fft256_1.read(60, 63); 
  
  } 
 
  // Print output to serial monitor: 
  for(int i = 0; i < 5; i++){ 
 
    Serial.print(freqBins_0_4[i]); 
  
    if(i == 4){ 
      Serial.println(" "); 
    } 
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    else{ 
      Serial.print(" | ");  
    } 
  } 
} // END PROGRAM 

 

/*  
 * TEST HIGH FREQ 
 * for R & V 
 */ 
 
#include <Audio.h> 
#include <Wire.h> 
#include <SPI.h> 
#include <SD.h> 
#include <SerialFlash.h> 

 
AudioInputAnalog      adc1; 
AudioAnalyzeFFT1024   myFFT; 
AudioConnection       patchCord1(adc1, 0, myFFT, 0); 
 
void setup() { 
 
  AudioMemory(12); 
 
  myFFT.windowFunction(AudioWindowHanning1024); 
 
} 
 
void loop() { 
 
  float n; 
  int i; 
 
  if (myFFT.available()){ 
for(i = 463; i < 468; i++){ 
 
      n = myFFT.read(i); 
 
      Serial.print(n); 
      Serial.print(" "); 
  
    } 
    Serial.println(); 
  } 
 
} 
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2.2.5 Solenoid Driver 
 

Functional Overview 
 
This block contains the solenoid drive circuit. The drive circuit takes input from the              
Teensy as a 0V or 3.3V digital signal, then this digital signal is amplified and used to                 
switch the FET that controls the current to solenoid. Two forms of circuit protection are               
provided, a flyback diode on the solenoid to prevent high voltage spikes, and gate input               
resistor to prevent large current draws from the Teensy. 

 
Requirements and Verification 

 

Requirement Verification 

Requirement 1 
Solenoid driver supplies 
10V ± 1V to the gate of the 
power FET. 

Equipment: 
1) Power supply 
2) Signal generator 
3) Oscilloscope 

 
Procedure: 

1) Connect signal generator to port V_TEENSY, 
and oscilloscope connected to FET gate. 

2) Set signal generator to square wave, 3.3V, 
10Hz. 

3) Power on circuit and signal generator. 
4) Observe if the requirement is met across the 

oscilloscope. 
 
Expected Result: 
The oscilloscope should output a square wave with 10V 
amplitude at 10Hz frequency. 

Requirement 2 
Solenoid driver supplies 6A 
through the solenoid for a 
duration of 0.1 seconds at a 
PWM freq of 1Hz. 

Equipment: 
1) Power supply 
2) Signal generator 
3) Oscilloscope 

 
Procedure: 

1) Connect signal generator to port V_TEENSY 
and a current probe on the FET drain_source 
path. 

2) Set the power supply to 12V volts and power up 
the circuit. 

3) Set the signal generator to square wave, 3.3V, 
1Hz. Turn it on. 

4) Observe the solenoid current on the 
oscilloscope. Confirm that the expected current 
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is being applied. 
 
Expected Result: 
We should see the solenoid current reach 6A before it 
decays. 

 
Table 2.6: Solenoid Driver Requirements and Verification 

 
Supporting Materials 
 
Schematics 
 

 
Figure 2.12: Solenoid Driver Circuit 
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Calculations 
 
The amplifier used to boost the input signal is an op-amp in non-inverting configuration.              
The gain for a non-inverting op-amp is: 
 

(2.9) (1 )  V VV in

V out =  + Z inverting

Z feedback = 1 + 10k
20k = 3 /  

 
Then an output voltage of 3.3V from the Teensy will apply 10V at the gate of the FET. 

 
2.2.6 Solenoid 
 

Functional Overview 
 
The solenoid is the electromechanical energy conversion device of our system. Its            
purpose is to drive the drummer so that audible output can be heard. The device of                
choice is a linear actuator pull type. This actuator exerts a pulling force when current is                
applied, and exerts a pushing force when current is cut-off. These two forces will allow               
the actuator to pull the drummer arm in the direction of a drum strike, and push it back to                   
reset it. 
 
Requirements and Verification 

 

Requirement Verification 

Requirement 1 
Solenoid plunger achieves 
a full 1 inch stroke with 12V 
input. 

Equipment: 
1) Power supply 
2) Ruler 

 
Procedure: 

1) Assemble the solenoid and driver circuit with 
the input to the driver connected to the power 
supply outputting 3.3V. 

2) Power up the the driver circuit but keep the 
driver input low. 

3) Now switch the driver input on and then 
immediately switch it off. 

4) Observe that the solenoid achieves a 1 inch 
stroke. 

 
Expected Result: 
The solenoid stroke should pull in when current is 
applied, then push back out when current is cut-off. 
Each action should displace 1 inch. 

 

Table 2.7: Solenoid Requirements and Verification 

26 



Supporting Materials 
 

Calculations 
 
The solenoid design is shown in Figure 2.13. Our design goal is for the solenoid to have                 
a 1.5 inch stroke in under 0.3 seconds while loaded with the drummer arm. To achieve                
these constraints, we must calculate the solenoid turn count and current draw. We will              
start by calculating the force output required from the actuator. 
 
The solenoid will exert a downward force on both the actuator plunger and the drummer               
arm. Since the drummer arm swings through a small angle, we can approximate that the               
actuator resides below the center of mass of the drummer arm (see Figure 2.14) and               
plunger. Given the densities of each [12], [13], the mass of the drummer arm and               
solenoid plunger are: 
 

(2.10) ass density )(volume ) )(1.055x10 m ) .0126kgm arm = ( PLA arm = ( m3
1250kg 4− 3 = 0  

(2.11) mass density )(volume ) )(2.1545x10 m ) 0173kg plunger = ( steel plunger = ( m3
8050kg 6− 3 = .  

 

Next we will calculate the starting force needed to pull down the plunger and drummer               
arm in 0.2s: 
 

(2.12) t .5at 1in)(2) (0.1s) .08m s  xf = x0 + v0 + 0 2 ⇒ a = ( / 2 = 5 / 2  
(2.13) a mass ass )(5.08m s .81m s ) .4454N  F = m = ( arm + m plung / 2 + 9 / 2 = 0  
 

The net force in the above equation accounts for the force of the spring pushing against                
the mass and force needed to move the mass 1 inch in 0.1s.  

 
Next we will calculate the number of turns required to achieve the starting force for 2A of                 
current: 
 

(2.14)   N = √2Fx i u A2/ 2
0 = √2(0.4454N)(.0254m) (6A) (4πx10 )(2.837x10 )2/ 2 7− 5−  

70 turns  N = 6  
 

Where F is the solenoid starting force, x is the solenoid air gap distance, i is the current,                  
u 0  is the permeability of free space, and A is the area of the air gap. 
 
Mechanical Diagram 
 
a) Plunger: made from stainless steel 430 material, cylindrical shape, length = 76.2mm,            

radius = 3mm. 
b) Pull-piece: made from stainless steel 430 material, cylindrical shape, length =           

25.4mm, radius = 3mm. 
c) Guide tube: made from PLA, cylindrical with flanges, inner radius = 3.1mm, outer             

radius = 22mm, length = 88.9mm. 
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d) Coil: made from 20 AWG magnet wire, number of turns = 670. 
e) Yoke: made from stainless steel 430 material, rectangular box with two exposed            

sides, dimensions are 98.9mm x 24mm x 32mm, wall thickness = 4mm. 
 

Drawings 
 

 
1 2 3 

 
1 2 3 

Figure 2.13: Solenoid assembly: 1) Plunger and pull-piece, 2) Guide tube, 3) Coil, 4) Yoke, 5)                
Spring, 6) Spring cap.  

 
2.2.7 Drummer 
 

Functional Overview 
 
The drummer is the final stage of the system which is comprised of three sets of drums                 
and drumsticks where the drumsticks are driven by the solenoids. The drummer size is              
small, no greater than 18in 3 . The design for the drummer is a simple lever and fulcrum                
system where the lever is the drumstick. 
 
Requirements and Verification 

 

Requirement Verification 

Requirement 1 Equipment: 
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Drummer strikes drum 
when solenoid is triggered. 

1) Power supply 
2) Solenoid and driver circuit 

 
Procedure: 

1) Assemble the drummer with the solenoid and 
driver circuit. 

2) Power up the solenoid driver circuit. 
3) Trigger the solenoid and observe the drummer 

strike the drum. 
4) Listen for acoustic noise as the drummer strikes.  
5) Confirm that the drummer arm resets after 

current is cut-off from the solenoid. 
 
Expected Result: 
The drummer should strike the drum every time the 
solenoid is triggered. Then the drummer arm should 
reset when current is cut-off from the solenoid. 

 
Table 2.8: Drummer Requirements and Verification 

Supporting Materials 
 

Mechanical Diagram 

 
Figure 2.14: Mechanical Drummer Diagram. 

 
2.3 Tolerance Analysis 
 

The ADC of our system must be supplied with a voltage amplitude between the values of                
0.75V and 1.65V for adequate sampling. In order to achieve these values, we have              
implemented a fixed gain amplifier to boost the input signal from the microphone. The              
max voltage amplitude the microphone can deliver to mic level is 1mV. Our amplifier is               
designed to have a voltage gain of 1398 V/V, this corresponds to a max line level                
amplitude of 1.4V. To ensure that the ADC receives adequate signals, we will perform a               
tolerance analysis on the amplifier. This analysis will only consider the tolerance of the              
amplifier gain elements which are the feedback resistors and input resistors. We will             
make the following assumptions: the filter stage after the amplifier is ideal, and the mic               
level input into the amplifier is constant at 1mV. 
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Refering to equation 1, the voltage gain of each stage of the amplifier is -Z feedback /Z in . The                
impedance of the resistors is much greater than the impedance of the coupling             
capacitors so we can assume the gain is -R feedback /R in . We will represent the value of each                
component as follows: 
 

(2.15)  Rin = R (1 ± ∆R )in′ in
  

(2.16) (1 ± ∆R )  Rf = Rf ′ f  
 

Where R 1 ’ and R f ’ represent ideal values, and ∆R 1  and ∆R f  represent percentage error.  
 
The total gain of the 2-stage amplifier is: 
 

(2.17) 50 ≤  ≤ 16507
R (1±ΔR )R (1±ΔR )f ′ f ,1 f ′ f ,2

R (1±ΔR )R (1±ΔR )in′ in,1 in′ in,2
 

 
The inequality represents the minimum and maximum gain that the amplifier can have             
and still meet the tolerance requirement. Although the error terms in (2.17) are             
uncorrelated, we will assume that corresponding error terms are equal. This will ensure             
that we calculate the maximum tolerance a component can have. 
 
Let us assume the that R in is a 23kΩ with 5% tolerance, we can solve (2.17) for two                  
cases: 
 

(2.18) ∆R in  = +10% ⇒ -20.0% ≤ ∆R f  ≤ 15.1% 
(2.19) ∆R in  = -10% ⇒ -25.8% ≤ ∆R f  ≤ 3.3% 
 

The results show that R f  can have a tolerance of no more than ±3.3% for the given ∆R in . 
 

2.4 Point Assignment 
 

Block Component Point Value 

Power 7 

Pre-Amplifier 7 

Filter 7 

DSP 8 

Solenoid Driver 7 

Solenoid 7 

Drummer 7 

 
Table 2.9: Requirements and Verification Point Assignment 

30 



3 Cost and Schedule 
 
3.1 Cost 
 
3.1.1 Labor 

 
Labor costs are calculated based off a $65,000 annual salary with a 50 hour average               
work week. This is equivalent to a $25.00 hourly wage. We estimate on average 15               
hours a week per individual group member, over a 16 week period (1 semester). 

 
3.1.2 Parts 
 

Labor $18,000.00 

Teensy Microcontroller $33.25 

Behringer Microphone $20.00 

Microphone Cable $9.00 

Microphone Stand $7.58 

Microphone Preamplifier 

LM741 (op-amp)$ x2  $1.50 

Filter Components  

2 x LM741 Operational Amplifiers  2 x $0.50 = $1.00 

Various ceramic capacitor ( 0.1uF )  ≤   $0.10 

Power Components  

Linear Regulator $2.00. 

Mechanical Components  

Iron Pipe $4.00 

Iron Rod $2.00 

PVC pipe $0.50 

Gorilla Glue  $5.00 

Pen Case $0.00 

Magnet Wire $0.00 
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Springs $1.00 

PLA $1.00 

TOTAL $87.93 
 

Table 3.1: Parts & Labor Breakdown 
 
3.1.3 Grand Total 
 

Grand Total = Labor + Parts = $18087.93 
 
3.2 Schedule 
 

Task Group Member Target Completion Date 

Filter Prototype  Craig 2/24/2018 

Preamplifier Prototype Drake 2/24/2018 

Actuator Prototype Drake 2/24/2018 

Power Circuit Prototype 
(Battery, Linear Regulator, 

Circuit Protection) 

Drake 3/10/2018 

Characterize Teensy Nick and Craig 3/10/2018 

LED debugging circuit (for 
output testing) 

Craig 3/10/2018 

Interface all electrical 
prototypes 

ALL 3/17/2018 

PCB designed and ordered Nick 3/17/2018 

Mechanical Drummer  Drake 3/31/2018 

Interface all components ALL 4/7/2018 

Sound Detection Algorithm  Nick and Craig Implemented and refined 
throughout the semester. 

 
Table 3.2: Project Schedule 
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4 Discussion of Ethics and Safety 
 
We do acknowledge that, by the standard of the IEEE Code of Ethics [14], tenet #1, and                 
the ACM Code of Ethics and Professional Conduct, General Moral Imperative 1.2 [15],             
our project does have the potential to injure and shock members of the public through               
misuse. As such, to the best of our skills and abilities we shall endeavor to mitigate these                 
risks to the end-user and public at large, as demonstrated by the explicit inclusion of               
safety measures in the more hazardous elements of our design, as well as the              
observation of appropriate work practices in the lab environment itself. 
.  
With respect to the former, we aim to insulate sensitive and potentially dangerous circuit              
components (capacitors, batteries, etc.) from the user by way of a protective, electrically             
insulated enclosure. Note this would be a final consumer product feature, and will not              
currently be featured on the prototype. 
 
An additional concern for the end-user pertains to risks of hearing damage, as our              
device as an acoustic-production aspect to its operation. Per OSHA-issued noise safety            
standards [16], in the event our realized design achieves threshold of loudness specified             
therein, we advise the end-user and person within its vicinity of operation to observe              
OSHA’s recommendations for exposure-limits and/or to take appropriate measures with          
personal protective equipment (e.g. ear-plugs) as seen fit. 
 
With respect to the latter, some specific way in which we consistently practice proper lab               
safety techniques includes: never rewiring a circuit while it's still powered, and always             
powering down our lab equipment (including soldering irons) before leaving the bench to             
attend to another task. 
 
From the perspective of the development process itself, and in deference to the             
significance placed on the spirit of collegiality by the IEEE Code of Conduct, tenets #7               
and #10, we acknowledge the value inherent to recognizing the skills and background of              
the team-members, so that sufficient opportunity may be distributed evenly for           
contribution as well as professional growth. This also has implications for adhering to             
tenet #9, whereby misrepresentations of knowledge or ability may put members of the             
team, as well as the public at large, at risk, where the demands of a particular design                 
task carry safety considerations. As such, we will seek out expert knowledge and ability              
to assist us in the design process, if and when such circumstances arise. 
 
From the perspective of issuing proper credit to third-parties’ ideas and work, per the              
ACM Code of Ethics and Professional Conduct, General Moral Guideline 1.6, we have             
and shall continue to recognize the sources of inspiration for solutions to engineering             
challenges applied, as has been demonstrated throughout this document. It is not our             
intent to misrepresent our work, and will do our utmost to chronicle and cite the sources                
of our methodologies and implementations accordingly.  
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