BUTTER PASSING ROBOT

Ву

Yuchen He

Yu Jie Hsiao

Yuxiang Sun

Design Document for ECE 445, Senior Design, Spring 2018

TA: Xinrui Zhu

17 February 2018

Project No. 18

Contents

1. Introduction	3
1.1 Objective	3
1.2 Background	3
1.3 High-level Requirement	3
2. Design	3
2.1 Block Diagram	3
2.2 Physical Design	4
2.3 Power Supply	5
2.3.1 Lithium Battery	5
2.3.1 Voltage Regulators	5
2.4 Vehicle	6
2.4.1 Motor Module	6
2.5 Control Module	7
2.5.1 Microcontroller	7
2.5.2 Raspberry Pi and Camera	8
2.5.3 Infrared Sensor	9
2.5.4 Temperature Sensor	9
2.5.5 Current-limiting Resistor	10
2.6 Tolerance Analysis	11
3. Cost and Schedule	11
3.1 Cost Analysis	11
3.1.1 Labor	11
3.1.2 Parts	12
3.1.3 Grand Total	12
3.2 Schedule	12
4. Ethics and Safety	13
References	15

1. Introduction

1.1 Objective

For the senior design project, we are trying to build a small robot that can find butter on the table and bring it back. This idea was inspired by the famous sitcom "Rick and Morty". In one of the episodes, Rick built a robot which could fetch the butter once it received a verbal command from its owner.[1] Such robot has the ability to move around on its own, detect target objects, recognize human speech and recognize faces. To make our project useful but also manageable, we will mainly try to implement a small autonomous vehicle with an object detection module. We will also assume that the butter is cube-shaped, yellow in color, without boxing and placed in a plate.

1.2 Background

As the artificial intelligence gets more and more popular nowadays, we see an increasing number of "intelligent" robots that can make people's lives more convenient. For example, floor mopping robots can automatically wander around the room and absorb dust on the floor. Smart audio speakers can recognize voice commands and play the specified music. With that in mind, we decide to build a robot that can be useful in daily life by utilizing AI technology. To be more specific, we want our robot to have the ability to find and bring back butter on a dining table.

We did some research and found two existing projects online[2]. However, both these projects used existing robotic platform and did not showcase a solid software program. We plan to build a robotic platform that has the ability to run object detection program itself. That being said, computer vision will be an import aspect of our project. Thanks to the rapid development of machine learning in recent years, we have many existing frameworks and libraries (OpenCV, LeNet, Tensorflow...) to choose from. Our plan is to try those frameworks and find the most suitable one for our hardware platform.

1.3 High-level Requirement

- The vehicle can move by itself on a regular-sized (~ 2m*1m) table.
- The vehicle can detect the edge of the table and it will stop in order to prevent itself from falling
- The object detection program can distinguish yellow, cubed butter from other common breakfast objects (juice, bread... etc) and direct the vehicle toward butter

2. Design

2.1 Block Diagram

To be successful in operating, the butter passing robot requires three sections: a power supply, a control module and a robotic platform. The power supply consists of one Lithium battery as power source. It also contains three different voltage regulators so that all the electronic devices can operate under acceptable voltage range. The control module consists of a microcontroller and a Raspberry Pi. Connected with a camera, the Raspberry Pi will be used solely to analyze the image taken by its camera module. The microcontroller will be used to read inputs from the infrared sensor and the Raspberry Pi. It

will then output appropriate signals via H-Bridge circuit to both motors. We plan to incorporate the microcontroller, the infrared sensor, their voltage regulators and current limiting resistors on a PCB. The robotic platform(vehicle) consists of two motors, two small tires and one chassis.

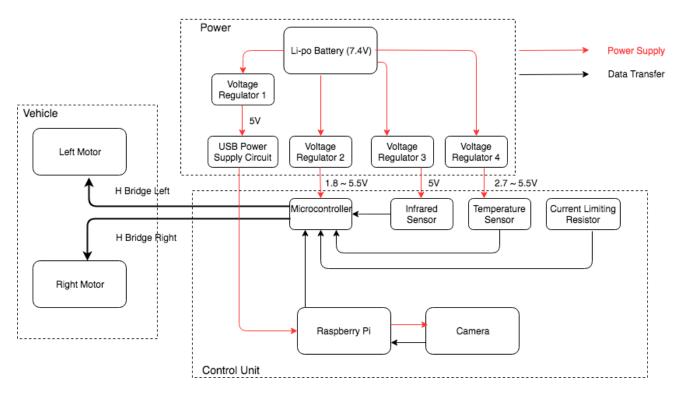


Fig. 1. Block Diagram

2.2 Physical Design

The physical design of our project is mainly based on the sparkfun vehicle[3]. The vehicle will be equipped with a battery, a PCB board and a Raspberry Pi board, all of which will be placed on the chassis. Two infrared sensors will also be attached to the bottom of the vehicle, one in the front and the other in the back. To enable the vehicle to physically bring the butter back, we plan to add two small plastic hooks extending out of the front of the vehicle. The vehicle will be approximately 20cm in length, 13cm in width and 5cm in height.

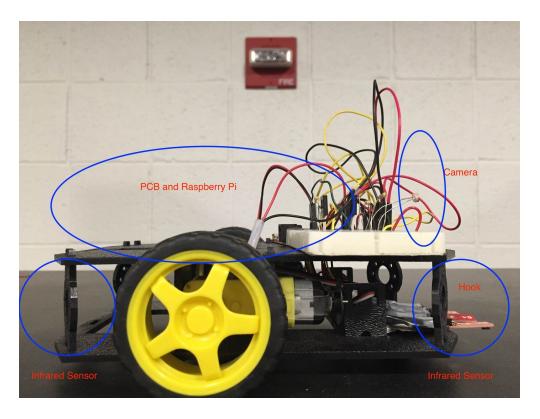


Fig. 2. Physical Design Sketch

2.3 Power Supply

The power supply module provide power to all the hardware components. It consists of two lithium batteries, four voltage regulators and a USB power-supply circuit for the Raspberry Pi board.

2.3.1 Lithium Battery

To ensure that our robot can work independently without any extra power chord, we plan to use two lithium batteries to supply power.

Requirement	Verification
The battery should be able to provide	We will put two Lithium battery in series,
voltage greater than 5V, so that the	and that will give us $3.7V * 2 = 7.4V$ [4].
Raspberry Pi can operate.	This will be sufficient.
The battery can power the robot up for at	Two batteries have power
least 30 minutes without recharging.	3400 mAh * 2 = 6800 mAh. This should be
	able to power the whole system for: $6800 \ mAh / 2225 \ mA \approx 3.05 \ h$
	$0800 \text{ mAn } / 2223 \text{ mA} \sim 3.03 \text{ h}$

Table. 1. Lithium Battery R&V

2.3.1 Voltage Regulators

Since the lithium battery will discharge over time, and all the hardware components operate under different voltages, we will need separate voltage regulators to transform the voltage from battery.

Requirement	Verification
-------------	--------------

The voltage regulator must provide 5V output to satisfy the needs of all components: the Raspberry Pi and infrared sensor operate under 5V; the microcontroller operates within $1.8V \sim 5V$; the temperature sensor operates within $2.7V \sim 5.5V$

Table. 2. Voltage Regulator R&V

2.4 Vehicle

The vehicle is the "body" of our project. It will perform all the physical work: moving toward the butter and bringing the butter back. It receives instructions and power from the control module.

2.4.1 Motor Module

We plan to use H-Bridge circuits to drive our motors. The advantage of a H-Bridge circuit is that it can drive the motor in both directions. This will give us the ability to rotate the vehicle about its center and to drive the vehicle backwards. Below is an example diagram using H-Bridge circuit with a L293 motor driver.

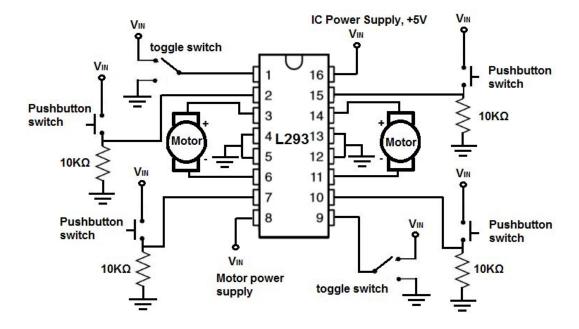


Fig. 3. H-Bridge Example[6]

Enable	Logic Pin 1	Logic Pin 2	Result
High	Low	High	Forward
High	High	Low	Reverse

High	Low	Low	Stop
High	High	High	Stop
Low	/	/	Off

Table. 3. Modes in H-Bridge Circuit

The enable pins control the motors. If they are connected to ground, then neither of the motors can be operated. Through the H-bridge circuit, if the logic pin 2 of either motor is high, then the corresponding motor will spin in a forward direction. Similarly, if the logic pin 1 of either motor is high, then the corresponding motor will spin in a reverse direction. Once two logic pins are both low or high, then the motor will shut off. This is how we control the forward and reverse movement of motors.

Requirement	Verification
The vehicle can move forward and backward.	We can alter the sign of voltage applied on
	both motors to make the car go back and
	forth.
The vehicle can rotate about its center.	By applying a positive voltage V on the left
	motor, and a negative voltage -V on the right
	motor, we can have two motors moving in
	opposite directions at the same speed. Thus
	the vehicle will rotate about its center.

Table. 4. Motor Module R&V

2.5 Control Module

The control module is the "brain" of our project. It is powered by the power supply module and it outputs signal to the vehicle module.

2.5.1 Microcontroller

We plan to use an ATmega328p microprocessor manufactured by Microchip Technology for this project. It will receive voltage readings from the Raspberry Pi, the infrared sensor, the temperature sensor, and the current-limiting resistor. Inputs from the first two parts contribute to the functionality of our project, while inputs from the last two components provide safety precautions for our project.

Requirement	Verification
The microcontroller has enough pins to	According to the datasheet[7], ATmega328p
communicate with all 8 devices:	has 22 general-purpose I/O pins in total.
2 motors, 2 infrared sensors, 1 temperature	We have enough pins to communicate with all
sensor, 1 Raspberry Pi, and the current-limit	the peripherals. And we can even expand
resistors.	some I/O values to make it more accurate.
Total number of pins needed:	
2 + 2 + 1 + 2 + 4 = 11	

Table. 5. Microcontroller R&V

2.5.2 Raspberry Pi and Camera

We plan to use a Raspberry Pi 3B motherboard and its corresponding v2 camera module for this project. Those two components are crucial since they are in charge of providing our robot accurate information about the butter. The Raspberry Pi is powered by the power supply unit, through the USB power supply circuit. The v2 camera module will be directly powered by the Raspberry Pi board. The v2 camera module will be placed at the front of the vehicle so that it can take photos of the environment the vehicle is facing.

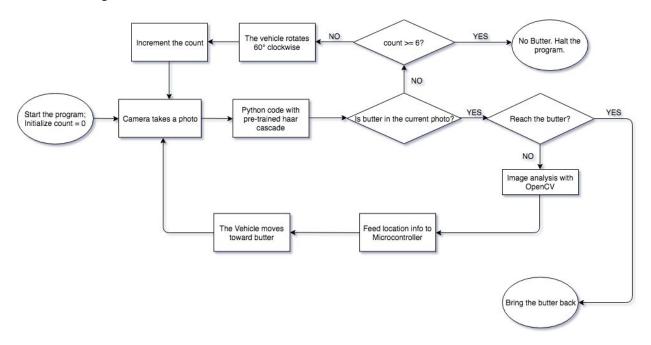


Fig. 4. Control Module Flowchart

Requirement	Verification
The camera must be able to take photos	The camera supports both 1080p(1920 *
with resolution greater than 100*100. Since	1080) and 720p(1280 * 720) image. [8]
our classifier will be generally trained with	
images larger than that.	
The camera must be able to take at least two	The camera supports 30fps for 1080p and
photos every second.	69fps for 720p.
The program can finish processing an image	We will try different object detection
in 0.5 s, so that the motor can always act in	approaches as well sa platforms: Cascade
time	Classifier, CNN If the raspberry pi does not
	have enough computing power for our
	purposes, we will consider using a wireless
	module and run the program either in cloud
	or on a remote desktop [9]
The program can distinguish butter from	When training the classifier, we will feed in
other kitchen objects of similar color:	and test with images of similar-color kitchen
orange juice, honey mustard.	objects

The program can detect yellow, cubed	When training the classifier, we will feed in
butter in the size smaller than 12cm * 3cm *	and test with images of cubed butter at
3cm[10]	different sizes, different angles
The program can derive location	When running the classifier, we will loop the
information of the butter from the image	search window through the whole image,
	taking notes of the leftmost, rightmost
	positions with butter present. Since we
	know the field of view of v2 camera[11], we
	can calculate the angle to turn. [12]

Table. 6. Raspberry Pi and Camera R&V

2.5.3 Infrared Sensor

We plan to install two infrared sensors on our vehicle, one in the front, another in the back. They are used to make sure our vehicle never falls off the table. When the infrared sensor outputs values below a threshold, the microcontroller should stop stop the motor. The infrared sensors are powered by the power module and their OUT pin will be connected to the microcontroller.

Requirement	Verification
The infrared sensor should be able to	According to previous work with this sensor,
distinguish gray floor, which is about 80 cm	it will output around 4.3 V over white
away from the white table, which is about	surface, and 4.85 V over black surface. The
3mm away.	difference is quite distinguishable. [13]

Table. 7. Infrared Sensor R&V

2.5.4 Temperature Sensor

We include a temperature sensor in our project for safety precaution. Since we are using a Lithium battery to power the whole system, we need to make sure the temperature of the battery is within a safe range. According to experience of previous groups, that range should be from 0°c to 40°c.[14] The temperature sensor will be powered by the power supply module and its output will be used by the microcontroller.

Requirement	Verification
The temperature sensor should have a	According to the datasheet, the temperature
detecting range greater than 0°c to 40°c.	sensor has a detecting range of -5°c to 125°c
The temperature sensor should have an	According to the datasheet, the temperature
error smaller than ±3°c.	sensor has ±2°c accuracy.
The voltage output of the temperature	According to the datasheet, the temperature
sensor should be detectable by our	sensor has a scale factor of 10 mV/°C.
microcontroller.	Assume the temperature of the battery
	raises from 20°c (room temperature) to 40°c
	(dangerous), then the voltage reading will
	increase by 0.2V, which is detectable by our
	microcontroller.

Table. 8. Temperature Sensor R&V[15]

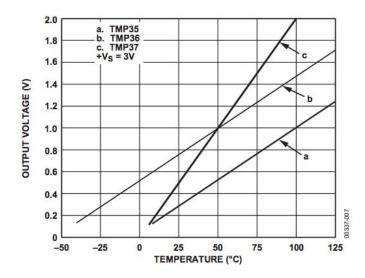


Fig. 5. Temperature Sensor Characteristics

2.5.5 Current-limiting Resistor

To make sure that the current going into all the components will not damage those components, we plan to put them in series with some constant-value resistors. The general setup will look like the following diagram.

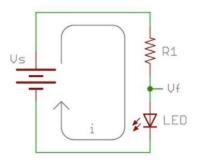


Fig. 6. Current-limiting Resistor Example

Requirement	Verification
The current going into Raspberry Pi should	The voltage over this resistor R should not
not exceed 2A	exceed $2 * R(v)$
The current going into infrared sensor	The voltage over this resistor R should not
should not exceed 25mA	exceed $0.025 * R(v)$
The current going into microcontroller	The voltage over this resistor R should not
should not exceed 200mA	exceed $0.2 * R(v)$

Table. 9. Current Limiting Resistor R&V[16]

2.6 Tolerance Analysis

The most important requirement for our project is the running time of the object detection program. If the software program has a time complexity or space complexity that's too large, the Raspberry Pi will spend more time processing each image. If the vehicle cannot receive up-to-date information about the butter's location, it will just continue in its old path and end up somewhere further away.

We did some research online and found a project where a Raspberry Pi with its camera was used for face recognition.[17] From this video, it takes around 4 seconds for the Raspberry Pi to finish processing an image taken by the v2 camera module. However, the Raspberry Pi used in this video is an older model. According to another article we found online[18], the model we use (Raspberry Pi 3B) has a benchmark score that's 50% better than the older model. So our estimation is that the same face detection will probably take around 2.5 seconds to finish on our Raspberry Pi. And we believe we can reduce this time further by reducing image size and feeding more manually created, specific-to-our-environment positive images.

Also, our Raspberry Pi has Wi-Fi module included. According to this test[19], the Wi-Fi speed can reach up to 35 Mbits/s. The file size of an image taken by Raspberry Pi camera is around 2.5 MB under full quality. Thus, the Raspberry is capable of transmitting a full-size, full quality image in 0.6 seconds. ($2.5\ MB\ /\ ((35\ Mbits/s)/8)\ = 0.6s$) We can further reduce this by shrinking the image. Given the strong connectivity and fast image-transmitting capability, it's also possible for us to run the object detection program on a cloud server (e.g. AWS Linux instance) and send the result back.

With all these options available to us, we plan to first try different object detection frameworks and compare their time complexity. Then we will pick the fastest one and transfer that trained classifier/CNN to our Raspberry Pi. Then we will time the object detection process on Raspberry Pi and decide whether to utilize other computing resources.

3. Cost and Schedule

3.1 Cost Analysis

The total cost of this project would be the sum of our labor cost and the cost to purchase hardware parts.

3.1.1 Labor

According to Engineering Career Services at UIUC[20], the average starting salary for Engineering graduates from UIUC is \$71,856. Dividing this number by working hours per year: 40*52 = 2080, we get the average hourly rate: \$35. However, since we all haven't graduated yet, it would be more realistic to estimate our hourly rate to \$30. Given the design of our project, we assume each of us will work 10 hours per week for 13 weeks. Thus, the total labor cost of this project would be:

\$30/hr/person * 3 persons * 10 hrs/week * 13 weeks = \$11700

3.1.2 Parts

To successfully implement this project, we need to purchase some hardware parts. The following table gives detailed information about the cost of each component. We also include the spare parts we need for development and testing here.

Part	Manufacturer	Retail Cost (\$)	Count
Raspberry Pi 3B Motherboard	Raspberry Pi Foundation	35.91	1
Raspberry Pi Camera Module	Raspberry Pi Foundation	26.45	1
V2			
ATMEGA328P	Microchip Technology	2.20	2
Sparkfun QRE1113 Infrared	Sparkfun	2.95	4
Sensor[21]			
Li Battery	Panasonic	15.99	2
Shadow Chassis[22]	Sparkfun	12.95	1
Motor[23]	Sparkfun	1.95	2
TMP36 Temperature Sensor	Sparkfun	1.50	1
L7805 Voltage Regulator	STMicroelectronics	0.95	5
Total		133.64	

3.1.3 Grand Total

The total cost of our project would be:

11700 + 133.64 = 11833.64

3.2 Schedule

Week	Objectives	Yuchen	Yuxiang	Yu Jie
02/19	Prepare for Mock Design	1.) Write the cost,	1.) Write the	1.) Write the
	Review;	schedule and	objective,	functional
	Finish Design Document	block diagram	background and	overview and
		section	high-level	ethics section
		2.) Requirement	requirement	2.) Requirement
		and Verification	2.) Requirement	and Verification
			and Verification	
02/26	Research different	Train a classifier	Research the	Research different
	platforms for object	for butter	H-bridge circuit	hardware parts,
	detection;	detection and test		design the circuit
	Prepare for Design	the computing		protection scheme
	Review	speed		
03/05	Finalize PCB design;	Train another	Finalize PCB	Finalize PCB
	Test the parts on	object detection	design. Test	design.
	breadboard;	scheme using	different parts on	Experiment with
	Get familiar with	CNN, time the	breadboard.	different sensors
	soldering	processing		output range.
03/12	Finalize on the object	Compare different	Test the circuit on	Test the
	detection method;	software and	the PCB board,	functionality of

	Transfer the desired one onto Raspberry Pi; Test the first PCB board	transfer the most suitable program onto Raspberry Pi	check against schematic and simulation	different sensors on board
03/19	Integrate the Raspberry Pi with microcontroller	Test software program output with manually fed images simulating the demo environment	Test signals going into microcontroller and adjust the input to H-bridge circuit	Test the functionality of the vehicle: rotation, movement
03/26	Check the functionality of the vehicle	Improvise on software;	Find issues with prototype, revise and may re-submit for final PCB design	Test all power supply, revise and may re-submit for final PCB design
04/02	Assemble all different parts together	Finish software code. Debug code to control prototype precisely	Work on physical installment of the project	Work on assembling final PCB and ensuring that power is delivered to PCB while it operates and spins
04/09	Debug	Final debugging and ensure that everything is operating correctly	Final debugging and ensure that everything is operating correctly	Final debugging and ensure that everything is operating correctly
04/16	Prepare for Mock Presentation	Mock demo preparation.	Prepare for mock demo and help with communications issues from the motors	Prepare for mock demo and help with communications issues with the controller
04/23	Finish up on final report and summarize the work	Work on presentation and paper	Work on presentation and paper	Work on presentation and paper
04/30	Prepare for Final Presentation	Finish up final papers	Finish up final papers	Finish up final papers

4. Ethics and Safety

The major safety concern within our project is the use of a lithium battery. Risks include the thermal stability of active materials within the battery at high temperatures, fires and even explosions. Failure in performance can be caused by short-circuiting, poor execution of a design, or an unanticipated use or abuse of a project. To prevent any of those risks, we need to check our circuit design before actually implementing it. Also, we should always place our battery in a safe position in order to prevent it from violent collisions, which can damage the separator and cause the electrodes to touch. If the battery be

pierced(either by accident or deliberately), then short circuit will happen. Based on data and experience from previous projects[24], we will also implement some circuit to constantly monitor the temperature of our lithium battery. If the temperature exceeds an optimal range, we will program the microcontroller to shut down the system.

Another safety concern of our project is current overflow. This can be caused by design flaw, mechanical issue like motor overheat or getting stuck. Current overflow can do damage to all the devices we have on the PCB board and can also potentially damage our Raspberry Pi. In order to prevent this from happening, we will add some current limiting resistor to limit the current. We will also feed the voltage reading across those resistors back into the Microcontroller. The microcontroller should be programmed to halt the whole system if the voltage exceeds a pre-calculated threshold.

Working in the ECE senior design lab with other groups also has safety risks. To prepare us for that, we all completed the lab training program and obtained the certificate. We will always keep safety precautions in mind and not impose danger to other students or ourselves.

We are responsible for the outcome and information of our project, following every rules in the IEEE code of ethics [25]. Specifically, considering the 7th rule of IEEE code of ethics, since we will require large amount of knowledge for improving and accomplishing this project, variable experiences and technical information related to will be needed from the Internet or books. We will pay respect and be grateful to others for their efforts; furthermore, plagiarism will not happen. Besides, the 9th rule should also be watched out. In that our robot may be touched directly, we will take care designing the physical part in case of current leaking which can cause injury to human.

References

- [1] *Rick and Morty You pass Butter*, Youtube. Available at: https://www.youtube.com/watch?v=X7HmltUWXgs
- [2] *Rick and Morty butter passing robot*, Youtube. Available at: https://www.youtube.com/watch?v=7jGcqPJm5vw https://www.youtube.com/watch?v=TZbxWvc9O6M
- [3] Sparkfun RedBot Basic Kit. Available at: https://www.sparkfun.com/products/retired/13166
- [4] Panasonic NCR18650B Super Max Rechargeable Li-ion Battery, Amazon. Available at: https://www.amazon.com/Panasonic-NCR18650B-Rechargeable-Battery-3400mAh/dp/B00DHXY72O/ref =sr_1_1?ie=UTF8&qid=1519274078&sr=8-1&keywords=panasonic+li+battery
- [5] Voltage Regulator 5V, Sparkfun. Available at: https://www.sparkfun.com/products/107
- [6] H-Bridge Circuit, Wikipedia. Available at: https://en.wikipedia.org/wiki/H_bridge
- [7] ATmega328P Complete Data Sheet. Available at: http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega3 28-328P_Datasheet.pdf
- [8] Raspberry Pi Camera Module V2, Sparkfun. Available at: https://www.sparkfun.com/products/14028
- [9] Convolutional Neural Networks vs. Cascade Classifiers for Object Detection. Available at: https://dzone.com/articles/cnn-vs-cascade-classifiers-for-object-detection
- [10] Size and Shape of Packaging, Butter, Wikipedia. Available at: https://en.wikipedia.org/wiki/Butter
- [11] Field of View of Raspberry Pi V2 Camera, Raspberry Pi Forum. Available at: https://www.raspberrypi.org/forums/viewtopic.php?f=43&t=154155
- [13] Final Project Report: LineFollowing, Lightsensitive Autonomous Vehicle, Robert Altman and Yuchen He
- [14] *Design Document*, ECE 445 Course Website. Available at: https://courses.engr.illinois.edu/ece445/guidelines/design-document.asp
- [15] Temperature Sensor TMP36, Sparkfun. Available at: https://www.sparkfun.com/products/10988
- [16] LED Current Limiting Resistors, Sparkfun. Available at: https://www.sparkfun.com/tutorials/219

- [17] OpenCV Face Detection with Raspberry Pi Robotics with Python p.7, sentdex. Available at: https://www.youtube.com/watch?v=1l4gHpctXbU&t=965s
- [18] *Raspberry Pi 3 vs Pi 2: What's the difference?* TrustedReviews. Available at: http://www.trustedreviews.com/opinion/raspberry-pi-3-vs-pi-2-2936374
- [19] Raspberry Pi network speed test: RPI2, RPI3, Zero, ZeroW (LAN&WiFi), Not Enough TECH. Available at: http://www.notenoughtech.com/raspberry-pi/raspberry-pi-internet-speed/
- [20] "Student Success", Engineering Career Services. Available at: http://ecs.engineering.illinois.edu/outcomes/
- [21] *SparkFun RedBot Sensor Line Follower,* Sparkfun. Available at: https://www.sparkfun.com/products/11769
- [22] Shadow Chassis, Sparkfun. Available at: https://www.sparkfun.com/products/13301
- [23] Hobby Motor Gear, Sparkfun. Available at: https://www.sparkfun.com/products/11696
- [24] *Projects, Spring 2017,* ECE 445 Course Website. Available at: https://courses.engr.illinois.edu/ece445/projects.asp
- [25] *IEEE Code of Ethics*. Available at: https://www.ieee.org/about/corporate/governance/p7-8.html