
NESLA Coil Mock Design Review:

Raspberry Pi Model B

SoC: Broadcom BCM2837
CPU: 4× ARM Cortex-A53, 1.2GHz
GPU: Broadcom VideoCore IV
RAM: 1GB LPDDR2 (900 MHz)
Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless
Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy
Storage: microSD
GPIO: 40-pin header, populated
Ports: HDMI, 3.5mm analogue audio-video jack, 4× USB 2.0, Ethernet, Camera Serial Interface
(CSI), Display Serial Interface (DSI)

https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/

The Raspberry Pi will be running a distribution of Linux, with support for Simple DirectMedia
Layer (SDL), for creating a multimedia interface our NES emulator can use to play various ROM
sounds and their accompanying graphics.

The NES Emulator must be open source, and compatible with SDL1, SDL2 and Linux. A few
candidate emulators are:

● https://github.com/ahefner/tenes
● https://github.com/AndreaOrru/LaiNES
● https://github.com/amhndu/SimpleNES
● https://github.com/randrews7/rnes

Although they are different emulators their dependency on the SDL library to create sound
makes the overall mechanism for exporting a digital audio signal the same. We will take
advantage of this similarity, by creating a pluggable intermediate software layer that sits
between SDL’s audio output buffer, and the stream of sound samples being fed into it. Resting
our software design dependency assumptions on SDL rather than a specific emulator, gives us
the freedom to choose which specific emulator we use based upon, how well the emulator
performs when implemented in the Raspberry Pi environment. The software layer we are
creating will be transparent and will take on the task of duplicating the real-time audio samples
produced by the APU and re-routing the amplitude sample duplicates into an alternate buffer.
Using an alternate buffer, we now have a data source to write our GPIO pins with. To write to
the Raspberry Pi’s GPIO pins, we will link-in a library called Wiring Pi during the compilation
process. WiringPi is a library written in C, that is compatible with the Broadcom BCM2837 SoC
used in the Raspberry Pi (http://wiringpi.com/). Using WiringPi, we can gain access to the 40
GPIO pins on the Raspberry Pi board. At this point, we now have a way of exporting a real-time
digital audio signal produced by the NES into our coil circuitry.

1

https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/
https://github.com/ahefner/tenes
https://github.com/AndreaOrru/LaiNES
https://github.com/amhndu/SimpleNES
https://github.com/randrews7/rnes
http://wiringpi.com/

Digital Audio Converter

At this point in the data path, a sequence of bits is being stream-lined from the GPIO on the
Raspberry Pi. The purpose of the Digital Audio Converter is to process the digital sound signal
to a corresponding analog signal. The digital signal supply voltage needs to be considered in the
design of the DAC, as well as the resistance values. These values will need to match the
specifications that can be accurately handled by the op amp for correct operation. After the DAC
stage the output should be an analog signal that steps from 0 to a negative max. An offset added
to this value will give a good range, allowing the PWM circuit to process.

2

Pulse Width Modulator

This component will modulate our processed analog signal into a pulse width modulated triangle
wave. To perform pulse width modulation of our input analog signal, we will use a 555 timer
circuit. Specifically, the NA555 as its output specifications grant us the ability to modulate pulse
widths for the entire range of audible frequencies. Since we need to drive the coil, at a specified
resonant frequency within the kilohertz range, we will run another NA555 in parallel to the pulse
width modulating NA555. This NA555 will output a triangle wave that has a fixed frequency,
and matches the resonant frequency of our coil. Using TTL AND gates, we will mask the pulse
width modulated triangle wave with the resonant triangle wave, so that the resonant frequency
triangle wave acts as a carrier wave for our sound data.

http://www.ti.com/lit/ds/symlink/ne555.pdf

https://www.maximintegrated.com/en/app-notes/index.mvp/id/3977

3

http://www.ti.com/lit/ds/symlink/ne555.pdf

H Bridge

With our pulse width modulated square-wave, we will feed this signal into the gate terminals of
the MOSFETs that drive our H-Bridge. The purpose of the H-Bridge is to rapidly switch the
Tesla-Coil’s primary between a high voltage of about 300 V and ground, according to the output
of our previously produced pulse width modulated square wave signal. By modulating whether
or not the primary is connected to high or low, we can control the amount of power being input
into the Tesla Coil at any given time. The overall goal, is to input power through pulse width
modulated impulses that result in discharge being emitted out of the coil’s top load at a
frequency that creates a desired audible tone. The resulting sound’s waveform will resemble the
analog signal being input into the pulse width modulator. However, we expect some distortion as
a result of using plasma as our sound producing mechanism. This distortion is not a concern,
because the hardware limitations of the NES APU already restricts the sound resolution, so
deteriorations will be less noticeable in comparison to a high-resolution signal.

Coil

The coil operates as a resonant transformer with an LRC circuit on the secondary side. The
transformer itself is a 200:1 step-up air-core transformer. We are using an air-core to prevent
magnetic flux saturation. In order to achieve the desired effect of musical electrical arcs it is very
important that the coil be driven at its resonant frequency. We will determine this frequency by
measuring the secondary coil’s inductance and the toroidal top load’s capacitance.

4

