Coat Hanger Light Switch Controller

Kate Eaton and Birgit Alitz

Introduction

- Automate an easily forgettable task
- Simplify morning routine
- Reduce electricity costs

Department of Electrical and Computer Engineering

Objectives

- Effective control of light
- Wireless, subtle home integration
- Delay
- Allow normal control of light independent of hanger status

ECE ILLINOIS Department of Electrical and Computer Engineering

Control Unit - Light Switch

Control Unit - Hanger

ECE ILLINOIS Department of Electrical and Computer Engineering

ILLINOIS

Physical Layout

Department of Electrical and Computer Engineering

Z-Wave Communication

- Z-Wave is a radio frequency (RF) control protocol
- Based on a mesh network topology
- Wi-Fi consumes a lot of power, Bluetooth has limited range
- Use Home Assistant to create Z-Wave Hub
- Open-source home automation platform
- Communicates with and coordinates all the smart devices in network

ECE ILLINOIS Department of Electrical and Computer Engineering

I ILLINOIS

Microcontroller

- Used a Raspberry Pi Zero and a Z-Stick to create a Z-Wave hub
- Most cost effective option
- Customizable

ECE ILLINOIS

Department of Electrical and Computer Engineering

- Direct hardware connection
- Inputs from Delay Circuit
- Verify with power source from oV-1.3V

I ILLINOIS

Department of Electrical and Computer Engineering

Pressure Device

Resistor balances pressure sensor for specificity

Pressure Device

Sensor Characterization

ECE ILLINOIS Department of Electrical and Computer Engineering

Delay Circuit

Crosses 1.3V threshold after a 60 second delay

Series resistors for time specificity

Delay Circuit

Evaluation

 $V_{C_2} = IR + \frac{Q}{C}$ $Q = CV_{C_2} \left[1 - e^{-\frac{t}{RC}} \right]$ $V_{in} = 5V$ RC = 60 $R = 60k\Omega$ $V_{C_2} = .632V_{in} @ t = RC$

 $.\,632V_{in}=3.16V$

Results

https://youtu.be/OTnMTFW1L5w

Design Challenges and Future Solutions

- Circuit Discharge
- Power Management

Future Work

- Implement Battery LED
- Separate Z-Wave Hub
- Integration with multiple targets

Thank You

