AUTOMATED SCORING SYSTEM FOR
TICKET TO RIDE

By

Andrew Douglas

Matthew McCracken

Final Report for ECE 445, Senior Design, Fall 2017

TA: Kexin Hui

13 December 2017

Project No. 43

Abstract

Discussed in this report are the inner workings of our automated version of the popular board
game Ticket to Ride. All of the game pieces been removed and replaced by LEDs and players have to do
none of the score calculations. Our product significantly reduces playtime and increases enjoyment as a

result. The end product is a working proof of concept that can be applied to a full-scale version of the
game in question.

Contents

i [A o Te [¥ T A 1o o W TP PP USTOPPTRTOUPRI 1
B =] = o N 3
2.1 POWET ittt ettt st e s a e e e e et e s e et e e s a et e s srrt e e s sanes 3
2.2 USEI INTEITACE ..ttt ettt et b e s bt st e et e bt e sb e e s heesatesabe et e e b e e nbeesbeesaeeennean 4
P 0] o1 1 o] IO T T TP UEPTOUOOTOURTPI 4
VT N 6
200 T I8 N 7
28 LD ettt h e bt e h e a et et b e bt e b e e b et ea et e R et e b e e e bt e eheeeat e e bt e bt e bt e abeeeneeeateerean 8
I D1 = VL= a1 o1 Lo ISP 9
I o =T OSSP PRSP PR PPPRTN 9
3.2 USEI INEEITACE ettt ettt e s bt e e s bt e s bt e e s abe e s be e e sabeesabeeebeeesbaeenans 9
3.3 CONTION ittt ettt et e bt e e a b e st e e e b et e e bt e e bt e e eabee s baeesabeesbaeeaabeesbeeenanes 9
BUA IMICU e e e e e s e e e e e s e s e s s e e s e e s e e e e e e e e e e s e e e e e e e aaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaaaasaeaeaaanns 10
35 LED et b e bt s bt ea et e a et e bt e bt e eh e e e he e s bt e bt e bt e beeebeeeaeeeaee e bt e nbeesheesarenas 10
BB LCD ettt bbbt eh et et e et e e bt e e bt e e he e et e e bt e bt e b e e ebeeeheeeateeteenbeesheesarenas 11
L o 1] PPN 12
Lt =Y o £ PP 12
A I o Lo TSP P PPV PPTO PSP 13
D CONCIUSION ..ttt b e bt s bt s at e e a bt e bt e bt e sheesaeesube et e e bt e bt e sbeeeaeeeateebeesbeesheesanena 14
Lo I ¥olole) g oY o1 1] o T g T=T o YRS 14
5.2 UNCEIAINTIES et e s e s e s e s 15
5.3 Ethical CONSIAEIratioNscocuieiiieiieiiee ettt 15
5.4 FUTUI® WOTK ettt sttt et et b e st st st e bt e b e sbe e smeesateeneereesneesane e 15
REFEIEINCES ...ttt st ettt e b e s b e st s e e bt e bt e s b e e s me e sat e et e e bt e s beesanesaresne e reenes 16
Appendix A Requirement and Verification Table.........c..eeiieiiiiicciiie e e 17

1. Introduction

Ticket to ride is a popular board game for good reason: it’s fun to play. The only thing that bogs
down an otherwise enjoyable experience is the scoring process. There are 36 cities in total and paths in
between adjacent cities. This allows for 100 unique paths (with a total of 308 train spaces) to be claimed
while playing Ticket to Ride. Each path has a differing number of cars required, ranging from 1 to 6. The
more cars laid down at once, the greater the point reward: 4 points for 3 cars, 7 points for 4 cars, 10
points for 5 cars, etc. As the scoring doesn’t linearly translate to the number of cars on the board,
scoring is confusing and mistake ridden [1]. Figure 1.1 shows the game board and how the paths are laid
out.

S ool | o s s} o ol o) s g

Figure 1.1: The gae board for Ticket to Ride showin the different cities and pathsto be claimed.

To automate the scoring process for ticket to ride, some way to keep track of pieces on the
board was required. Using some sort of sensor on each square on the board was examined, but using
308 sensors in total plus other components proved to be costly. Further automation of the game by
eliminating pieces was a cost-effective measure that makes the game even more convenient for the
player. This is accomplished by lighting LEDs instead of placing train pieces to claim a route.

The final game works as such: when a player wishes to claim a path, they push the two
corresponding city buttons, the path lights up in their color, and the score is automatically updated and
displayed on a LCD display. The design itself went through many iterations, ultimately resulting in a
proof of concept that accomplishes the tasks presented, represented by Figure 1.2:

Supply
5V 12V
User o8 7
y 3
P i e L e (I LEDs
A___-___---—kg"""_:—_r R S SO DS
Legend
LCD = DigitalData
: : Signal
- = Power Line

Figure 1.2: Overall block diagram for the design.

This project can be divided into six blocks: Power, User input, Control, MCU, LED, and LCD. The
power supply provides power to the whole design. The user input module consists of buttons that allow
the user to provide input to play the game. The control module compresses the amount of data sent to
the MCU module. The MCU module processes player moves, updates score, lights corresponding LEDs,
and controls the LCD. Finally, the LCD module displays all player information such as score and cars left.

Goals:

e Reduce playtime
e Automate scoring process
e Eliminate game pieces

High level requirements:

e Light up train spaces
e Calculate and update score every turn
e Automatically end game

2. Design

2.1 Power

The power module is one of the components that underwent significant changes over the
course of the semester. The two options that had been initially considered were to use batteries or to
use a power adapter that plugs into the wall. Batteries have the benefit that the game remains portable,
but they need to be replaced and don’t store that much energy. Using wall-power solves the problem of
replacing batteries and can also supply much more power than any reasonable number of batteries. The
downside to wall-power is that needing to be near an outlet limits the portability of the game and
having a cord coming out of the project would not be as aesthetically pleasing as having a contained
compartment for batteries. Initially, the decision was to use battery power for its superior portability,
however, we hadn’t considered how long the batteries would last with the power draw of our project.

The component of our project that consumes the most power, by far, is the LED module. We
measured each strip of 3 RGB LEDs to consume about 60 mA of current when producing white light.
Note that producing white light draws the most current because the red, green, and blue LEDs that
make up the RGB LED must all be on at full power. When producing purely red light, we measured a
strip of 3 RGB LEDs to only draw about 20 mA of current. This makes sense as only the red LED needs to
be on. Based on the number of board spaces that need to be illuminated, a total of 135 strips of 3 RGB
LEDs. If all of these LEDs were to be producing white light at the same time, there would be a total
current draw of 135 *60=8100mA or 8.1A. Understanding the huge amount of current that would need
to be provided, also considering that the LEDs need to be run at 12 V, using batteries was deemed a
poor solution for the power demands of this project.

Having eliminated batteries as an option, a wall plug power supply needed to be selected that
could handle the current draw of the LEDs in addition to the other components in the project. The
maximum current draw of 135 strips of 3 RGB LEDs was calculated to be 8.1A, however this is
significantly more current than will be used in practice. All 135 strips are needed to illuminate the entire
board, but there is no way that all of the spaces can be claimed under the rules of the game. Each player
possesses 45 train cars that they can use to claim routes and there is a maximum of 5 players in a game.
Therefore, if all of the players were able to use all of their pieces, a total of 45*5=225 spaces would be
illuminated. Given that there are a total of 308 spaces on the board, only about 73% of the spaces could
be on at one time. This reduces the maximum current draw to 0.73*8.1=5.9A. The upper bound
provided by this calculation assumes that all of the LEDs are producing white light. In reality, each player
will have a different color, meaning that the not all the LEDs will be producing white light. As measured
previously, producing colored light draws less current when compared to producing white light.
Therefore, it is safe to assume that the upper bound on the current draw of the LED module is 6A.

Based on the requirements of the LEDs, a power supply is needed that can deliver at least 6 A at
12 V. The other modules in the project need to be accounted for in the selection of the power supply.
Our microcontroller was measured to draw 25 mA when running code and the LCD consumed about 3

mA. The user input module draws a negligible amount of current when buttons are being pressed and
consumes no current when none of the buttons are pressed. Like the user input module, the control
module used a negligible amount of current. In the end, a wall plug power supply was selected that
could deliver 8A at 12V. The whole design should not consume much more than 6 A at maximum, so this
supply is able to handle the maximum current draw of the design with a fair margin of error.

2.2 User Interface

The User Interface module is a fairly simple module. In the initial design, there was to be a PCB
to check for valid inputs: a series of AND gates and XOR gates would ensure that one and only one valid
input was being pressed at one time: Ready = (C; & Ci) @ (Cp & Cy) ... D (Cx & Cy). A series of flip-flops
and an AND gate would ensure that the output ‘ready’ signal was only high for one clock cycle. This
design was ultimately thrown out based on the sheer cost of components and soldering time required to
implement the design. A more cost effective and faster solution was to check the city inputs in software
instead of a dedicated piece of hardware.

2.3 Control

In order to only have to use one MCU for our purposes, a way to compress the 36-bit input of
the city buttons was required. The main hardware component of this design, the control module, deals
with compression of the city inputs. The city buttons act as a 36-bit binary input to the system, and the
output is two integer values: the number of low signals encountered before a high signal. The desired
process is outlined in Figure 2.1 and the schematic for the PCB is shown in figure 2.2.

Enable
Low?

Yes

No

Shift reg loaded w/
36 bit city info

No
Increment counter

Yes

Load compression
Right shift 1 register with counter
value

MCU reads from
compression register

Figure 2.1: Flowchart of compression operation

T T
" olnfesls]z| ") " "
] el O 1 A BN BN] o]
= = o | =] | = =+ | =
Blpiy zovwoveeg @ | BlpIy rovucveag 2 [BlpIY sovwavaag B BlpfY sovwovaay | [BpfY zovucvexg[d
e] |] glEeo b | B & 4l2E0]
=& + =& . b + =l + Ik +
B3 B3 B3 83 53
i L3
oo &
5 T T- T T T-
Y
ol
= HIFT_OUT
o Vi vz
] CTRDIV16 CTRDIV16
4 i PR
CT= =
Eak B B
. s s
b Fiz [
=0 . scT=15 [N acT=15 =
.] e]
. = ?
e 5 ER ER P
+ +
] - €5 /2,3,4+ 2 €S 72, 3,4+
Tvx/—us =
: 210 (1] = 150 1]
4 IE 4
GHD (2] (2]
= 141
- 18]
741610
B
i
E EEEE]
B SR
e
@)
&

Figure 2.2: Schematic of Control Module

The button data was loaded into 8-bit parallel load shift registers (74165) [2]. Two 4-bit counters
(74161) [3] are on the same clock as the parallel load shift registers. The shift-out of the parallel load
shift registers acts as the load for the two parallel in - parallel out shift register (74194) [4] which then
holds the final output: the number of Os before a 1 from our original city-button inputs.

2.4 MCU

The MCU module is responsible for maintaining the state of the game and calculating the player
score. In addition, the MCU must communicate with the control module to evaluate a player’s move as
well as communicate with the LED and LCD modules to give visual feedback to the players. An Arduino
Mega 2560 [5] was used as our MCU because we had one on hand. The block diagram representing the
general flow of the game is represented below in figure 2.3:

I Get Num Players |

l

| Players Enter Destination Cards |

| Process Player Move |

:
[Apply Score Bonuses |

| Game Ends |

Figure 2.3: Software Block Diagram

Each element in this block diagram is a major step in updating the game state. At the beginning
of the game, the number of players is entered and each player takes turns entering their destination
cards. The game continues until one player has less than 3 train cars remaining. While the game is in
progress, the MCU polls the control module to see if a player has made a move. When a valid move is
detected, the game state is updated and then the game continues. Once a player has 2 or less train cars
remaining, the longest path and destination card score bonuses are applied and the winner is declared.

The entire board is shaped like a graph, so it was logical to use a graph data structure to
represent the game board. Each of the cities make up a node in the graph and the paths between them
are weighted edges. An adjacency list was used for the graph, rather than an adjacency matrix, to
optimize for memory at the expense of runtime. The memory available on the microcontroller is very
limited and the graph of the game board is sparse. Using an adjacency matrix would have wasted a lot of
valuable memory just to gain a small performance boost. The program only needs to run fast enough for
the player to deem it responsive. For this reason, we can afford some delay in the software.

The longest path bonus can be assigned by using Dijkstra’s algorithm. The weights of the edges
can all be made negative and then running Dijkstra’s algorithm for each player will give the length of the
longest continuous path each player has. Determining if a player has completed a destination card is
also relatively simple. Starting at one of the cities specified on the destination card, a breadth first
search reveals whether that player has connected the two cities in question.

2.5 LED

The LED module had to eliminate the need for physical pieces to play the game. By illuminating
different color LEDs on each of the board positions, players can still visually identify who is in control of
the various routes on the board. In the early stages of the project, individual RGB LEDs would be placed
under each of the spaces on the board. This approach would require soldering 308 individual LEDs to
PCBs that would be placed underneath the game board. A huge amount of time would have been
necessary to solder these individual LEDs in place, not to mention the large cost of creating all of the
PCBs to go under the game board. A cheaper and more time-effective solution was to use RGB LED
strips. The strips selected were WS2811 12V RGB LEDs. In addition to reducing the amount of time that
we would spend soldering, using LED strips simplified interfacing with the MCU. Rather than having to
use a one GPIO pin to control a single group of LEDs, the LED strips have a 1 bit serial data line that can
be used to address LEDs on any strips that are connected in series.

2.6 LCD

The primary function of this module is to give detailed feedback to the players. To achieve this
purpose, two different ideas were considered: output relevant information to an LCD display or create a
mobile app that could communicate with the MCU and display the game state information. The mobile
app has the benefit that the larger screen size could be used to display more information. In addition, all
the players can easily read the information if it is displayed on their own mobile device. Comparatively,
the LCD can display much less information and would be difficult to read for somebody who isn’t sitting
directly in front of the display. While the LCD is clearly inferior in terms of functionality, it has the
benefit of being cheap and easy to implement. A mobile app would have required a significant
investment of time to develop the app and to add a communication module (Bluetooth, Wi-Fi, etc.) to
the project.

The specific LCD used in this project was a 2 row by 16-character display that used Hitachi
HD44780 LCD controller chips. Controlling the LCD was made easy because the LiquidCrystal library for
Arduino works specifically with the Hitachi HD44780 chips. Since the display only has two different rows
for text, conveying information posed a challenge. Each line of the display is used to show current score
and number of train cars remaining for a single player. For example, a line suchas “P1 15 39" is
displayed to show that player one has 15 points and 39 train cars remaining.

3. Design Verification

3.1 Power

The verification process for the power module was straightforward. The multimeter was used to
check the output voltage of the supply. We measured an output voltage of 12.1 V, which was within our
voltage tolerance. To verify that the power supply could handle the current draw of the project, a total
of 225 LEDs were connected to the power supply. Recall that this is the maximum number of LEDs that
could be powered on during the game. All the LEDs successfully turned on and the power supply did not
grow hot to the touch. One benefit of the selected power supply is that it had several 2.1 mm plugs as
output. This is the exact plug that is used by the Arduino. To see if this plug could be used directly with
the Arduino, it needed to be verified that the plug was center-positive. Placing the positive lead of the
multimeter inside the plug and the negative lead of the multimeter on the outside of the plug, a reading
of positive 12.1 V was obtained. This confirmed that the plug was center-positive and thus could be used
directly with the Arduino.

3.2 User Interface

Verification for the user interface included a multimeter and an LED block. First, an LED block
was hooked up to each button circuit and the button was pressed. If the LED turned on, a multimeter
was then used to ensure we were getting 5V and ground from each button. The current was then
measured across the pull-down resistor to ensure that the resistor value was high enough to reduce
current draw. A 1kQ resistor was chosen so the buttons would only draw 5mA when a button was on.

3.3 Control

Verification of the control module included grounding all inputs except for one and tying the
outputs to a block of LEDs. The clock and enable were controlled by the Arduino. When the enable was
set low for one clock cycle, the clock would run for another 36 clock cycles and the output would be
recorded on the LED block. This was done for each individual output.

One difficulty in this situation is using the LED block as a verification tool. When we integrated
the control module with the MCU module, the same results were not obtained as were with the LED
block. Eventually it was discovered that while the outputs of the control module were correct, the
voltage levels of the outputs (~2.2V when measured with a multimeter) were not high enough to be
recognized as a logical high by the MCU. This was fixed by analog reading the output of the control
module and manually setting a threshold to be considered logically high.

3.4 MCU

The MCU module was verified by playing through the game. On each turn, it was visually verified
that once two city buttons were pressed, the corresponding path between the two cities was
illuminated. When a path between two cities was claimed, it was also verified that the correct player’s
score was updated and displayed to the LCD. For example, if player one claimed the path between
Helena and Denver, the route between Helena and Denver should light up player one’s color, their score
should be increased by 7, and their number of train cars should be decremented by 4. When any of the
players had less than 3 cars remaining, the game ended as expected. The longest path and destination
card bonuses were verified to be working correctly by looking that the change in each player’s score at
the end of the game. The information displayed on the LCD was always identical to what would have
been calculated by hand in the traditional version of the game.

3.5LED

Verifying the LEDs is a visual process. The LEDs were connected to the power supply and first
tested for current draw using a multimeter, which was measured at around 20mA per strip per
individual color (60mA when all three LEDs were white). The LEDs were then connected to one of the
data pins on the MCU. A test program was written to address different LEDs and turn them on and off or
change the color to ensure they were in proper working condition before they were soldered in place.
After soldering one more strip, the growing strip of connected LEDs were again tested to ensure
connections were soldered well in case modifications were needed along the way. Figure 3.1 shows the
LEDs in working condition in the final design.

Figure 3.1: Verification of LED Module when claiming a double path

10

3.6 LCD

The verification for the LCD module is almost entirely visual. Once the LCD was connected to the
MCU, we could display any messages desired to the screen. When playing through turns of the game,
the game state information displayed was exactly what was expected. As mentioned in the power
module, we measured the current draw of the LCD module to be approximately 3 mA. Note that this
current draw is only for displaying characters to the screen. A backlight could be enabled to increase
visibility in low-light conditions, but that would increase the current draw of the LCD. See Figure 3.2 for
an example of how game state information is displayed on the LCD.

11

4. Costs

4.1 Parts
Table 4.1 Parts Costs
Part Manufacturer Quantity Retail Cost ($) | Actual Cost (5)
Power Supply Jhua 1 19.99 19.99
Buttons CO-RODE 40 2.72 2.72
4-bit Shift Register Texas Instruments 2 2.69 2.69
(74194)
8-bit Shift Register Texas Instruments 5 3.61 3.61
(74165)
Control PCB PCB Way 1 1.00 1.00
Arduino Mega 2560 Arduino 1 38.50 38.50
4-bit Counter (74161) Texas Instruments 2 3.90 3.90
WS2811 LED Strips IKSACE 3 44.67 44.67
LCD Display Hitachi 1 8.95 0
1 kQ Resistor Vishay 40 1.47 0
Plywood 4x8 ft. Home Depot 1 23.38 0
Total 150.88 117.08

12

4.2 Labor

Table 4.2 Labor Costs
Name Total Hours Hourly Rate ($/Hr) Labor Total (x2.5)
Drew 122 40 12,200.00
Matt 122 40 12,200.00
Total 244 24,400.00

Table 4.1 gives a combined retail parts cost of $150.88 and table 4.2 gives a total labor cost of

$24,400.00. Adding these costs together gives a total project cost of $24,550.88.

13

5. Conclusion

5.1 Accomplishments

Throughout the course of the semester, a successful proof of concept was developed that
accomplished all the tasks outlined (See Figure 5.1). It plays a full, scaled-down version of the game
complete with city buttons, LEDs on each included path, and score automation. Claiming paths,
inputting destination cards, calculating bonuses, and displaying the data all work as expected. All of the
elements of the design had to be working correctly in order for the scaled-down version of the game to
work. It follows, then, that a full-scale version of the game should be possible using all of our
components.

Figure 5.1: Final proof of concept.

14

5.2 Uncertainties

It’s uncertain how some aspects of this project will scale up. One of the huge difficulties in
integrating all the working components was soldering - soldering all the LEDs took an immense amount
of work that could have been used to make a high quality scaled down version, like the final outcome.
The huge time investment (approximately 22 man-hours) that was spent soldering the LEDs together
didn’t even result in having fully functional LEDs over all spaces in the game. Therefore, estimating the
total amount of work that would be required to connect all the LEDs becomes very difficult. One
alternative to assembling all the LED strips by hand would be to order a PCB the size of the game board
and simply solder the LEDs in the appropriate place on the PCB. However, a PCB of this size would likely
be prohibitively expensive. Another option would be to have individual PCBs placed under each route.
These PCBs could be assembled with the LEDs already installed. Even if the LEDs are already installed in
the PCB, there would still be the work of connecting these PCBs together. Other than solving the
problem of installing that many LEDs, the rest of the components of the design should face no difficulty
in scaling up to the full-size version of the game.

5.3 Ethical considerations

One ethical consideration would be getting a license to produce and sell this concept as a full-
blown product. Ticket to Ride is of course owned by a company, so to be able to manufacture and sell a
product a license must be obtained. At the moment, this product does not seem to be commercially
viable. Between licensing fees and the high cost of materials and labor, the price of an automated
version of Ticket to Ride would be too high for most consumers. As we do not intend on selling our
system, we will avoid any ethical concerns associated with profiting off the work of others.

In the design of our project we strove adhere to the IEEE code of ethics [6]. Of special
importance to was point 7 in the code of ethics: “to seek, accept, and offer honest criticism of technical
work, to acknowledge and correct errors, and to credit properly the contributions of others”.
Completing an automated scoring system for Ticket to Ride was a learning process throughout - and
constructive criticism was always sought to improve our design as much as possible.

5.4 Future work

The first task in the future work would be to scale up the game. In reality, scaling up can be done
with careful LED soldering, planning, and execution, as well as a lot of dedicated time to finish the
manual labor. Completing the full-scale version of the game will also make apparent any components
that take a long time to integrate into the greater system. This would allow us to better understand the
bottlenecks that could exist if this product were to be produced again.

15

References

[1] “Ticket to Ride Rules” Days of Wonder Boardgames,
https://cdn0.daysofwonder.com/tickettoride/en/img/tt rules 2015 en.pdf

[2] “SNx4HC165 8-Bit Parallel-Load Shift Registers.” SNx4HC165 8-Bit Parallel-Load Shift
Registers, www.ti.com/lit/ds/symlink/sn74hc165.pdf.

[3] “Synchronous 4-Bit Counters” SN74161 4-Bit Synchronous Counters,
http://www.ti.com/lit/ds/sdls060/sdIs060.pdf

[4] “74HC194 4-Bit Bidirectional Universal Shift Register.” 74HC194 4-Bit Bidirectional Universal
Shift Register, media.digikey.com/pdf/Data%20Sheets/NXP%20PDFs/74HC194 Rev_3.pdf.

[5] “Amtel ATmegaV-2560" 8-Bit Amtel Microcontroller,
http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-
2560-2561 datasheet.pdf

[6] “IEEE Code of Ethics.” IEEE, www.ieee.org/about/corporate/governance/p7-8.html.

16

https://cdn0.daysofwonder.com/tickettoride/en/img/tt_rules_2015_en.pdf
http://www.ti.com/lit/ds/symlink/sn74hc165.pdf
http://www.ti.com/lit/ds/sdls060/sdls060.pdf
http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
http://www.ieee.org/about/corporate/governance/p7-8.html

Appendix A Requirement and Verification Table
Table A System Requirements and Verifications
Module Requirement Verification Verification
status
(YorN)
e Power Output 12V Use a multimeter to Y
tolerance of £ 0.5V measure output
from our power voltage.
source.
Output at least 6A Use a multimeter to
to the LEDs. measure current
output.
e User Input Output signals Use a multimeter to Y
should be provided determine input and
at 5V or ground with output voltage of
a tolerance of + the module.
0.5V.
e Control Compress 36-bit Use oscilloscope to Y
data from the User- compare input-
Input module into output voltages
unique 12-bit data from logic gates and
to be sent to the ensure the correct
MCU. compression is
output.
e MCU Decode 12-bit Every combination Y

digital signals from
the control module
to calculate current
scores.

Successfully
calculate score,
including bonuses
from destination
cards and longest
path.

of cities will be
tested to ensure
that all
scorekeeping is
correct.

We will display
values associated
with the completion
of routes and the
longest path in real
time so we can
verify our results
from the MCU.

17

Output game-state
information to the
LCD screen, such as
current player,
current scores, and
number of cars left.

Output correct data
signal to LEDs using
the data pin

Every possible input
will be executed as
to verify the correct
output from the
MCU. This is a highly
visual requirement
so the verification
will also be visual.

A multimeter will be
used to measure the
color signals and
ensure that the
correct color is
being output at all
times. Thisis a
requirement that
can be verified
visually as well as
guantitatively.

LED

Display the paths
taken in the correct
colors.

Every combination
of button inputs will
be tested to ensure
that all LEDs light up
accordingly.

LCD

Output correct
messages from MCU

This requirement,
can be verified
visually, as we will
be able to see if the
output is correct.

18

