

PRESSURE DETECTION: IMPROVING
PROSTHETICS EFFICACY

By

Nathan Beauchamp

Sihao Chen

Mickey Zhang

Final Report for ECE 445, Senior Design, Fall 2017

TA: Yuchen He

13 December 2017

Project No. 21

ii

Abstract

Current commercially available upper limb prosthetic devices use surface electromyography (sEMG)

sensors to enable the user to operate such device. Although sEMG system provides an acceptable level

of control accuracy, one of its shortcomings is that it is not very robust -- EMG signal incurs a lot of noise

from many sources, such as high impedance of the skin, external shock, shifting of the arm, and more.

This results in unintended movement of the prosthetic fingers, leading to increased device

abandonment [1]. Our solution is to propose an alternative control system, based on TMG pressure

sensors, which overcomes the aforementioned shortfalls.

iii

Contents

1. Introduction .. 1

1.1 Objective ... 1

1.2 Background ... 1

1.3 Performance Requirements .. 2

1.4 Block Diagram and Description ... 2

2 Design ... 4

2.1 Hardware Component .. 4

2.1.1 Pressure Sensors .. 4

2.1.2 Sampling Microcontroller .. 6

2.1.3 Control Board ... 9

2.2 Software Component .. 10

2.2.1 Classification Model ... 11

3. Design Verification .. 13

3.1 Hardware Component .. 13

3.1.1 Pressure Board ... 13

3.1.2 Control Board ... 13

3.2 Software Component .. 13

3.2.1 Classification Model ... 13

4. Costs .. 17

4.1 Parts .. 17

4.2 Labor ... 18

5. Conclusion ... 19

5.1 Ethical considerations ... 19

5.1.1 Wearable Medical Device Concerns .. 19

5.1.2 Battery Concerns .. 19

5.2 Future work ... 19

References .. 20

iv

Appendix A Requirement and Verification Table ... 21

Appendix B Pressure board verification data .. 25

Appendix C Board Layouts ... 27

1

1. Introduction

1.1 Objective
As able-bodied humans, we often take for granted our ability to perform basic physical actions such as

walking and picking up objects with our hands. Unfortunately, for many people around the world,

freeform body movement is something that exists only in dreams and the imagination. For example, in

the United States, 16.3% of adults have some kind of physical functioning difficulty [2]. In many cases,

engineering principles- including those of electrical and computer engineering- can be used to improve

the lives of the disabled. One particularly important disability to address is the loss of arm function due

to amputation. In the United States, 41,000 people have suffered the loss of a hand or a complete arm

[3]. Engineering has attempted to address this problem with a prosthetic upper limb- however, there are

issues with current implementations, namely efficacy and high cost.

One of the major challenges in designing a prosthetic upper limb is the effectiveness of the sensing

method that collects biological signals from the patient’s upper arm or shoulder and maps them to

various hand and wrist movements. The traditional sensing method for this purpose is surface

electromyography (sEMG) [4]. However, this method yields inconsistent results in practical use due to

the fact that the sEMG electrodes oftentimes capture a noisy mixture consisting of several arm muscles

[5]. Several researchers have demonstrated that, when attached to the arm, an array of tactile pressure

sensors can be used to capture muscle bulges and infer the patient’s desired wrist and hand movements

[5]. Therefore, a pressure sensor array should be considered as a viable input mechanism for a

prosthetic arm.

Our objective is to design and build a system to perform intent classification in a prosthetic arm. Our

system will use a pressure sensor array to replace the existing sEMG-based sensing solution. The system

should integrate cleanly into the prosthetic arm developed by Psyonic, as described below.

1.2 Background
Psyonic is a local startup that is developing an affordable prosthetic hand for people with upper-limb

amputations. Currently, they have a completed and working product that uses electromyography (EMG)

to enable the patient to operate the hand. However, they face several obstacles in the prosthetic-arm

interface. One of their main challenges is that the EMG signal incurs a lot of noise from many sources,

such as high impedance of the skin, external shock, shifting of the arm, sweat, and more. This results in

unintended movement of the prosthetic fingers. After communicating with the Psyonic team, we believe

that we can overcome many existing obstacles by replacing the existing EMG model with a model based

on pressure sensing.

Psyonic aims to provide an affordable prosthetic hand that will entail no out-of-pocket cost to patients

with health insurance [6]. Given this, the components we choose will need to be as inexpensive as

2

possible while still fulfilling their intended purpose. For example, the microcontroller that runs the

classification algorithms will need to be small-scale and low-power, yet still powerful enough to run the

algorithms.

1.3 Performance Requirements
 The hardware component (i.e. the circuitry to collect, process, and store the pressure sensor

inputs) should deliver the inputs with as little noise as possible and store the collected data,

allowing the microcontroller to easily sample the values.

 The microcontroller should execute code to interface with the hardware component and run

classification algorithms, mapping the patient’s input to one of several hand gestures in real-

time 50 ms windows.

 The machine learning model must classify the intensity map patterns read from the pressure

sensors, outputting a set of hand/wrist movements. Training should be done on a per-person

basis.

 Our design needs to integrate with Psyonic’s existing prosthetic arm design; therefore, the final

product will need to be small enough to fit comfortably into the bionic arm enclosure.

1.4 Block Diagram and Description
As shown in Figure 1 on the next page, the hardware component of our design can be divided into three

primary blocks: the sensor module, the sampling/modulation module, and the control module. First, the

sensor module reads the pressure applied by the patient’s upper-arm muscles at various points along

the human-arm interface. Since this module collects input pressure data, it must therefore also serve as

the physical interface for the patient. This module gathers the input data needed for patient intent

classification; as a result, it is imperative that it reads inputs accurately and with little noise. Second, the

modulation module samples and quantizes the analog input data generated by the sensor module. It

also stores the sampled results so they can be sent to the control module running the classification

algorithm. Each modulation unit handles a single array of pressure sensors, adding a layer of indirection

between the sensor and control units. This makes it easier for the control module to get the data it

needs in a timely manner. Third, the control module executes the classification algorithm to map input

pressure maps to output movement classes in real-time. Finally, the power supply and physical arm

modules are provided by Psyonic and are as such outside the scope of our project. In the final version of

our product, the control module would also communicate with actuators to drive the Psyonic

mechanical hand (shown in Figure 2 on the next page). However, as we are developing a proof-of-

concept prototype for Psyonic, we will instead simply output classification results to the terminal of a

connected PC.

3

Figure 1: Block Diagram for the Hardware Component

Figure 2: Current iteration of the Psyonic prosthetic arm prototype [6]. Our design replaces the EMG sensors with pressure
sensor boards and the myoelectric control board with a new control board.

4

2 Design

2.1 Hardware Component

2.1.1 Pressure Sensors

The pressure sensor array block contributes to the overall design by providing input pressure data from

the user, which will later be classified and mapped to an intent by the machine learning

algorithm. Given only the idea that a bionic arm’s EMG input system should be replaced with an input

system based on pressure sensing, there are multiple ways by which the sensor module subsystem

could be designed. The most important design decision for this module is the choice of pressure

sensor. There are many different types of pressure sensors, including capacitive and piezoelectric

varieties. However, we decided to use resistive tactile pressure sensors as they provide simplicity,

safety, and consistent contact with the patient’s skin, enabling easy integration into the bionic

arm. They also have a linear output characteristic within a reasonable force input range [5], which

facilitates the operation of the classification algorithm.

The tactile pressure sensors, as seen in Figure 3 below, consist of two electrodes and conductive sensory

material placed on top. A variety of materials can fit this role- including human skin, as it turns

out. However, as shown by Weiss and Worn, the material that yields the most accurate, classifiable

output is conductive elastomer foam [7]. Meanwhile, the electrodes will simply be printed on a PCB-

since we’re aiming for 12 cells per array, 24 electrodes will need to be printed on each PCB. The output

of a single tactile cell is the resistance between the two electrodes, which depends on the volumetric

resistance of the sensor material as well as on the pressure applied to the material [5]. The resistance of

the contact between the electrode and the material will change depending on the pressure applied-

therefore, if 𝑅𝑣 is the material resistance and 𝑅𝑠1 and 𝑅𝑠2 are the variable contact resistances, the

overall resistance across the sensor is 𝑅𝑡 = 𝑅𝑣 + 𝑅𝑠1 + 𝑅𝑠2 [5]. Then, a voltage divider circuit (shown in

Figure 4 on the next page) can be used in order to more easily measure the pressure sensor

readings. The output voltage can be calculated using the voltage divider rule:

𝑉𝑜𝑢𝑡 = 3.3 𝑉 ∗
𝑅𝑡

10KΩ + 𝑅𝑡

Figure 3: Schematic for a single tactile cell [5]

5

Figure 4: Voltage divider circuit to collect data from a single tactile cell.

During normal system operation, each pressure sensor in a given array will output the signal 𝑉𝑜𝑢𝑡, which

will pass through the ADC and be sampled by the sampling microcontroller. The 10KΩ resistor value

was chosen so that the sensor would be able to produce a reasonable range of outputs and operate in a

linear regime. This desired operational regime is shown in Figure 5 below.

Another relevant aspect of the pressure sensor design is that of consumed power. Since we are

designing a system that is housed in a wearable device, we need to ensure that our system is not

consuming enough power to harm or discomfort the user. With the stated design values, each tactile

cell will consume the following amount of power:

𝑃𝑐𝑒𝑙𝑙 =
(3.3 𝑉)2

10KΩ + 𝑅𝑡

Here, 𝑅𝑡 is the resistance of the tactile cell. Since there are 12 pressure sensors per board and five

boards in total, the total power consumed by all of these is 60*𝑃𝑐𝑒𝑙𝑙. At its maximum, 𝑃𝑐𝑒𝑙𝑙 will be

0.001089 W, implying that the pressure sensor module will consume a maximum of 0.06534 W of

power. This is a fairly insignificant quantity, and is definitely fine for a wearable device.

Figure 5: Sampled and quantized output of a single tactile cell for various applied forces [5]. The shaded portion of the plot
indicates the normal (linear) mode of operation of the sensor [5].

6

A final interesting aspect of the pressure sensor design is their role in the design of our printed circuit

boards (PCBs). Unlike the rest of our parts, our pressure sensors are not an off-the-shelf part; rather,

their electrodes are etched on our PCBs directly as SMD pads. This is shown in Figure 6 on the next

page. This fact results in two important design considerations for the board. First, no top-layer traces

can be routed near the area of the board that houses the pressure sensor array. Traces placed too close

to their sensors would affect their resistance curve, negatively affecting the data produced and the

performance of the classification algorithm as a result. Furthermore, all surface-mount components,

including the sampling microcontroller, needed to be placed on the bottom layer of the board. The

second design consideration is the necessity of a T-stop layer surrounding the grid of pressure sensors.

This ensures that solder mask will be poured on the area surrounding the sensors, isolating the sensors

from the copper pour. Once again, this serves to safeguard the resistance curve and output voltage

characteristics of the sensors.

Figure 6: Our fabricated pressure board. The pressure sensor array is located in the upper-left corner.

2.1.2 Sampling Microcontroller

The sampling/modulation block consists of an analog-to-digital converter to render the pressure sensor

signals usable for processing, and a small-scale microcontroller to sample and store the data for the

pressure sensor array to which it is assigned. The two are in the same block because they will be

present on the same chip- the microcontroller that we will use, PIC18LF2XK22, has 17 input ADC

channels with a 10-bit resolution ADC [7]. Each array will contain 12 pressure sensors, which is why we

chose a microcontroller with at least 12 input ADC pins; otherwise, we would need to utilize analog

multiplexing in addition to that already used by the microcontroller (it would be unrealistic to expect a

microcontroller to have 12 separate ADC modules). This would be needlessly complex and would likely

cause some performance decrease, which is why it makes sense to use a microcontroller with at least 16

ADC pins. This microcontroller also has two SPI digital communication peripherals with which it can

communicate with the main microcontroller [7]. Furthermore, PIC18LF2XK22 has an internal oscillator

that is configurable to speeds of up to 16 MHz [7], which is sufficient to sample and store the data in line

with the necessary ADC acquisition time. The analog signals generated by the pressure sensors are

aperiodic, and the classification algorithm requires the average value to be sampled in order to work

properly. Therefore, there is no particular requirement on the sampling rate of the ADC unit; only the

7

acquisition time is relevant, to ensure that the microcontroller can sample 12 analog inputs within each

time window. PIC18LF2XK22 allows the programmer to select and configure the ADC acquisition time, so

we will be able to fine-tune the device for our particular system. Given the simplicity of the operation

it’s performing, the sampling microcontroller does not need to run an operating system, nor does it have

any particular memory requirements.

The Sampling MCU/ADC block interfaces with two other blocks in our design: the Pressure Sensor Array

block, and the Control MCU block. First, analog voltage inputs from the Pressure Sensor Array block will

connect to the ADC pins on the microcontroller so that they can be sampled. Furthermore, each

sampling MCU will communicate with the main control MCU via the SPI communication protocol. We

decided to the use the SPI protocol over the I2C protocol- the other option available on most

microcontrollers- due to the difference in attainable throughput. The I2C protocol supports a maximum

throughput of 3.2 Mbps in its “high speed” mode [8]; in contrast, the throughput supported by SPI

depends on the clock speed used. Since the clock speed of PIC18LF2XK22 can be set as high as 64 MHz

[7], implying that the SPI bus speed can be as high as 32 MHz, we will be able to achieve much greater

throughputs with SPI. A master-slave protocol will be used- at the beginning of each time window, the

control MCU will poll each of the “slave” sampling MCUs, requesting the most recent sensor

data. Assuming time windows of 50 ms, 5 arrays of 12 pressure sensors each, and 10 bit ADC resolution

(packaged as 16 bits), the amount of data that will need to be transferred to the control MCU per

second is 20*5*12*16=19200 bits. This required data rate can be handled by the SPI protocol, thus

providing quantitative justification for choosing SPI.

The schematic of the sampling microcontroller breakout is shown below in Figure 7.

8

Figure 7: Circuit schematic for the pressure sensors and sampling MCU.

Overall, the sampling MCU circuit design is fairly standard. Tactile cells T6-T7 and T10-T12 are located

on the right side of the schematic. The other seven cells are connected via the trailing wires on the left;

they were omitted from this schematic in order to preserve readability. Each of the pins connected to a

sensor is configured as an input ADC pin, while the pins that are broken out into an SPI bus are

configured accordingly for SPI slave operation. Power is delivered through Psyonic’s power supply and

stepped down to 3.3 V using a linear regulator. Filtering capacitors are placed between each 𝑉𝑑𝑑-

ground pair. These capacitors exist to filter out high-frequency noise from the power signal; if left

unchecked, such noise could damage the IC and impact its operation. Finally, pins on the PIC

microcontroller are broken out to a five-pin connector to enable writing to the microcontroller’s main

flash (i.e. programming it).

As we did for the pressure sensors, we will analyze the sampling MCU circuit in terms of power

consumption. First, the PIC microcontroller is rated at a maximum power dissipation of 1 W [7]. Next,

resistor R13 will dissipate
(3.3 𝑉)2

1KΩ
= 0.01089 𝑊 of power, and the capacitors will dissipate no power.

Finally, the SPX3819 linear regulator is rated at up to 500 mA current load [9]. Therefore, assuming that

it receives a 5 V input and steps it down to 3.3 V, it will dissipate (5 V-3.3 V)*500 mA=0.85 W of power.

Overall, under the described assumptions, the combined power dissipated by all five pressure boards

(not counting the sensors themselves, which were handled in the previous section) can be written as

follows:

𝑃𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 5 ∗ (0.01089 + 1 + 0.85) = 9.30445 𝑊

9

While this isn’t an insignificant amount of power, it should be suitable for a wearable device given that

the enclosure successfully meets requirements.

2.1.3 Control Board

The Control MCU acts as the central control unit for the system. This board reads in voltage data from

pressure sensor boards, normalizes the data to {0, 1}, and runs the classification algorithm. The

algorithm has two phases, training phase and prediction phase. In training phase, the user is directed to

do a series of pre-defined actions that populates the machine learning model. In prediction phase, the

prediction goes to the movement class with the highest prediction confidence with respect to each

binary classification boundary. Additionally, the classification result must be translated and transmitted

via serial data line so that it meets the requirement of the existing interface of the Psyonic robotic hand.

The unit that we have chosen, STM32F401RBT6, satisfies the clock speed requirement, data

transmission requirement, and memory requirements [10]. The Control MCU will first read pre-

processed pressure sensor data via SPI interface from the registers of each modulation MCU. The MCU

has 64KB SRAM, which is more than enough to store the intermediate values required by the ML

algorithm. The schematic of the microcontroller breakout is shown in Figure 8. We based the breakout

on the functionality we needed to perform. The microcontroller communicates to five (5) pressure

boards over SPI, which requires five dedicated general purpose I/O pins. We also have a USB-serial port

that we can use to communicate with the chip, which enable us to have a terminal based user interface.

We program the chip using a dedicated programmer, ST-Link V2, on SWCLK and SWDIO pins.

10

2.2 Software Component
The primary role of the software component is polling the sampled sensor data from modulation

module via SPI communication, and predict the user’s movement intention by a machine learning

classification model with per-person based training. Figure 9 shows the flow of the software module.

The user inputs a mode selection byte at system start to choose to use the pre-trained model for

prediction or enter training mode using real-time data collection. The input byte was sent to the

microcontroller via USB-serial interface. The prediction result will be sent via the same USB-serial

interface to and displayed on the terminal of the connected computer.

Figure 8: Control board schematic Figure 8: Control board schematic

11

Figure 9: Software flowchart

2.2.1 Classification Model

For this project, we follow the definition of 6 movement classes described in Koiva et al 2015 [5],

including three finger movement classes – index finger flexion, little finger flexion and thumb rotation;

three wrist movement classes – wrist supination, extension and flexion. We also introduce a non-

activation movement class where no intended movements are performed. Figure 10 shows the target

gesture for each of the seven movement classes.

12

Figure 10: Demonstration of Seven Movement Classes

We implemented our classification model with seven one-vs-all L1-Loss soft margin support vector

machine as. The objective function is shown below,

𝑎𝑟𝑔𝑚𝑖𝑛𝑤
1

2
||𝑤||

2
+ 𝐶 ∑ max {0, 1 − 𝑤 ∙ 𝑥𝑘 ∙ 𝑦𝑘}

𝑚

𝑘=1

where {xk, yk } ∀k ∈ 1. . m is the training set. Each xk has 60 features -- each feature corresponds to

one of tactile cell on our pressure sensor board. yk ∈ {0 … 6} is the movement class label. C is the

penalty parameter, allowing outliers to be at the opposite side of support vector margin at the cost of

increasing hinge loss error scaled by C.

We train each individual SVM using a variant of stochastic gradient descent described in

Panagiotakopoulos et al. 2013 [11], which enforces the bound on L2-norm of w by relaxing decision

margin at each training time step. At each time step, one training sample is randomly selected from our

training set. A binary label 𝑦𝑘,𝑐′ is produced for each of the seven classifiers 𝑆𝑉𝑐 of movement class 𝑐 ∈

{0 … 6}, such that 𝑦𝑘,𝑐
′ = 1 only when 𝑦𝑘 = 𝑐, and 𝑦𝑘,𝑐

′ = 0 otherwise. At each time step, the weight

vector of each of the seven classifiers was updated exactly once.

13

3. Design Verification

3.1 Hardware Component

3.1.1 Pressure Board

The pressure board verification was centered on ensuring three things: that the pressure sensors were

able to output deterministic voltages based on the force applied, that the sampling microcontroller was

able to correctly read the pressure sensor outputs, and that the sampling microcontroller was able to

correctly send the read data to the control microcontroller. These ideas are greatly expanded upon in

the first six requirements of the R&V table given in Appendix A, which describe the main goals for this

part of the project. Overall, we were able to successfully verify five of the six requirements. Three of

the successful requirements (pressure sensor spatial resolution, pressure sensor accuracy, ADC

accuracy) were verified by collecting data, while the remaining two (ADC acquisition time, PIC clock

frequency) were verified by timing program executions. The data collected during the verification

process are presented in graph form in Appendix B. Unfortunately, we were never able to successfully

verify the SPI requirement- this is because, due to synchronization issues between master and slave, we

were unable to establish correct SPI communication. After considerable debugging, we hypothesize that

the large difference between the PIC’s clock speed and the SPI bus’s clock speed led to the slave writing

to and reading from the bus out of turn. Since the PIC utilizes a hardware SPI module, there is likely no

way to fix this issue in code. Instead, in the future, we will develop synchronization logic to smooth the

edges between the two clock domains, thus enabling synchronous communication.

3.1.2 Control Board

The control board verification is relatively straightforward. We need to ensure that it can function as

expected in our design. The detailed requirements are referenced in Appendix A, and we successfully

verified all the requirements. Although the control board does not have many quantitative verifications,

it is a solder intensive task to build the board. One component, in particular, was very challenging to

solder on. The component in question, CP2012 USB com chip, was a highly integrated and small package

that had its connection pins on the underside of the chip instead of having extended legs. Thus, it is not

possible to use the conventional soldering technique. The assembly of the chip required the “hot air

soldering” technique, in which solder is applied on all the soldering pads before blowing hot air in the

area and achieve all the connections at once under a microscope. Although a complicated build process,

it was easy to verify its functionality – the computer recognized the device when we connected an USB

cable.

3.2 Software Component

3.2.1 Classification Model

We first justify our choice of classification algorithm by verifying the linear separability on a simulated

dataset. We provide a brief definition of linear separability here. Two sets of points 𝐴 = {𝑎𝑖 ∈ 𝑅𝑛}, 𝐵 =

{𝑏𝑖 ∈ 𝑅𝑛} in Euclidean space 𝑅𝑛 is linear separable if there exists a Euclidean surface 𝑊, such that all

points in 𝐴 are in one side of the plane while all points in 𝐵 are on the other side. Linear separability is a

14

concept in Euclidean geometry, which is widely used in machine learning as an empirical way to decide

whether linear classifier (in Euclidean space) would suffice to classify the data.

We follow the description of collected data in Koiva et al, 2015 [5] to generate the mock data. Although

the paper didn’t provide statistics on the data distribution, we follow the description of characteristic

muscle groups involved in each movement class, and generate set of training & testing data using

method described below.

Each training/testing sample is a 4 ∗ 15 grayscale image, each pixel having value in [0, 1], between the

lowest (black) force detected and highest (white) force detected. For each movement class, we first

generate 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.1,0.2) background noise at each pixel. For the three finger movement classes,

Koiva et al. mentioned that because of the similar flexor muscle usage in performing the three gestures,

similar patterns are observed in the force image [x], but the force intensity levels are different. Similar

observations were made for the three wrist movement classes. For each class, we uniformly sample a

random point within radius of 5 pixels of a fixed muscle location for three finger movement classes and

another location for three wrist movement classes. We then apply a gaussian filter of pixel radius 3,

standard deviation of 1 pixel, and peak intensity sampled from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.25,0.65). Next, we random

sample 10% of the pixels, and assign 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) noise to them. For each class, we generated

10 training samples and 100 testing samples. Figure 11 shows an example pattern for each of the seven

classes.

Figure 11: Example Simulated Sensor Data of Seven Movement Classes

We use the 𝑡𝑆𝑁𝐸 technique [12] to reduce the dimensionality original data to two dimensions for

visualization. The Euclidean distance between two data points in the projected space has a positive

correlation to the Euclidean distance in the original high dimension space. Figure 12 and Figure 13 below

show the transformed result of our simulated training and testing dataset.

15

Figure 12: Visualization of Simulated Training Set

Figure 13: Visualization of Simulated Testing Set

Although we only observe a weak clustering pattern in Figure 12 due to limited number of samples

present in the training set, Figure 13 shows a strong clustering pattern for each movement class.

Furthermore, three finger movement classes (lower-left) showed strong distinction from three wrist

movement classes (top). And the “no movement” class is further away from both groups, as expected.

We can visually confirm that there exists a line that could roughly divide every two classes. This tells us

that in the original high dimensional space, there is at least a decision surface of equivalent order that

could divide our data. Given a decision surface 𝑤𝑥𝑇 + 𝑏 = 0, and a transformation matrix H, such that

𝑦 = 𝐻𝑥𝑇 is the 𝑡𝑆𝑁𝐸 projection to 2-D space of 𝑥.

𝑦𝐻−1 = 𝑥,

16

𝑦𝐻−1𝑤𝑇 + 𝑏 = 0

Let 𝑤′ = 𝐻−1𝑤𝑇. Then 𝑤′ is the decision surface of 𝑦. Although the 𝑡𝑆𝑁𝐸 transformation is non-linear,

but since the data is linear separable in 2D space, 𝑤 = 𝐻𝑤′𝑇 has could at least express a linear surface

in original dimension, thus verifying our claim that the data is linear separable.

For completeness, we verify the linear separability quantitatively by training a hard margin SVM on our

training set of 70 samples. The result is presented in Table 1 below.

Table 1: Hard SVM training result on training set

Precision 1.0

Recall 1.0

F1 1.0

For user-friendliness, we require the running time for classification model training to be less or equal to

30 seconds. Figure 14 below shows a screenshot from one of our training session on the control MCU.

Figure 14: Screenshot of software terminal output

Next, we present the evaluation result on testing dataset of 700 samples.

Table 2: Evaluation Result on Testing Set

Class No Move Wrist Flex. Little Flex. Index Flex. Thumb Rot. Wrist Ext. Wrist Sup.

No Move 100 0 0 0 0 3 0
Wrist Flex. 0 94 0 0 0 6 0
Little Flex. 0 0 94 7 0 2 0
Index Flex. 0 0 5 80 15 1 0
Thumb Rot. 0 0 0 11 85 2 3
Wrist Ext. 0 3 1 2 0 85 0
Wrist Sup. 0 3 0 0 0 1 97

Table 3: Evaluation Result on Testing Set

Precision 0.9944

Recall 0.8961

F1 0.9427

17

4. Costs
As is the case for any significant undertaking, our project has costs associated with its development. Our

expenses can be divided into two categories: the cost of obtaining parts and the cost of labor.

4.1 Parts
Our parts costs are shown in Table 4 below. All cost columns with the exception of “bulk purchase cost”

already account for the quantity ordered, meaning that the cost values shouldn’t be multiplied by

quantity. In contrast, the “bulk purchase cost” refers to price per unit when ordered in bulk. The “retail

cost” is the listed price of the given quantity of items, while the “actual cost” is what we actually paid for

the items, accounting for shipping costs. Since we generally purchased multiple items per order, we

were able to divide the shipping costs between them. Overall, the cost was significantly higher than

originally anticipated in the design document; this is mostly due to the fact that we had to place multiple

PCBway board orders due to bugs in the initial board. Also, it should be noted that this does not include

the cost of parts that were available in the senior design laboratory for no charge, such as soldering

irons, power supplies, and the PICKit3 debugger.

 Table 4 : Parts Costs

Part Quantity Manufacturer Retail Cost
($)

Bulk
Purchase
Cost ($)

Actual Cost
($)

Pressure Board PCB,
original

10 PCBway 5.00 0.2445 16.50

Control Board PCB,
original

5 PCBway 5.00 0.3436 16.50

Pressure Board PCB,
rev. 1

10 PCBway 5.00 0.2445 28.00

Pressure Board PCB,
rev. 2

10 PCBway 39.00 0.2445 61.00

Modulation MCU/ADC
(PIC18LF2XK22)

5 Microchip 8.10 0.89 8.10

Control MCU
(STM32F401RBT6)

1 Mouser 5.33 2.68 5.33

10K𝞨 0402 SMD
Resistor, 5% Tolerance

120 Bourns Inc. 1.25 0.00334 3.08

1K𝞨 0402 SMD
Resistor, 5% Tolerance

10 Bourns Inc. 0.26 0.00341 2.09

0.1 𝝁F 0402 ceramic
capacitor

34 KEMET 1.05 0.00640 2.88

10 nF 0402 ceramic
capacitor

10 Murata
Electronics

0.11 0.00233 1.94

1 𝝁F 0603 ceramic
capacitor

22 Samsung Electro-
Mechanics

0.90 0.01029 2.73

3.3 V, 500 mA linear
regulator (SPX3819M5)

10 Exar Corporation 6.31 0.28832 8.14

18

4.7K𝞨 resistor
(through-hole)

10 Stackpole
Electronics

0.40 0.00729 2.23

4.7 𝝁F 0603 ceramic
capacitor

10 Yageo 0.90 0.02261 2.73

USB-UART bridge
(CP2102)

3 Silicon Labs 4.20 1.22501 6.03

Micro USB connector 3 Amphenol 1.38 0.26196 3.21

1N4004 diode 6 Micro
Commercial Co.

0.66 0.01930 2.49

Total 172.98

4.2 Labor
Throughout the 16-week semester, each of us worked an average of approximately 12 hours per

week, with more downtime in some weeks than others. Based on this and assuming a pay rate of

$30 per hour, the labor costs for each teammate can be calculated using the following formula:

𝐶𝑙𝑎𝑏𝑜𝑟 =
$30

ℎ𝑜𝑢𝑟
∗

12 ℎ𝑜𝑢𝑟𝑠

𝑤𝑒𝑒𝑘
∗ 16 𝑤𝑒𝑒𝑘𝑠 ∗ 2.5 = $14400

Thus, since there are three teammates, the total labor cost for the project amounts to $43,200.

19

5. Conclusion
Our project was overall successful. We verified all of our individual requirements, and parts are

integrated except a timing issue in the SPI communication between the control board and the pressure

board. If given more time to implement the project, this bug can be easily fixed. Our user interface is

easy to use and intuitive. Furthermore, our machine learning algorithm performed better than expected

in both higher-than-expectation testing accuracy and significant reduced training time.

5.1 Ethical considerations

5.1.1 Wearable Medical Device Concerns

In designing and building our system, we must remain cognizant of potential ethical issues surrounding

the process. Since our system is meant to be used in a wearable medical device, we must be especially

attuned to the first tenet of the IEEE Code of Ethics: “to accept responsibility in making decisions

consistent with the safety, health, and welfare of the public, and to disclose promptly factors that might

endanger the public or the environment” [13]. Due to the importance of the arms in daily life, we are

ethically obligated to do everything in our power to ensure that our design is effective, safe, and

comfortable for the user. We are also ethically motivated to keep parts costs as low as possible, so that

the design will be accessible to those in need regardless of economic status. Thankfully, since we’re

integrating with Psyonic’s existing design, they will be able to help verify that our design meets these

requirements. Finally, it should be noted that, unlike costlier bionic limbs such as i-limb [14], our design

will not feature bluetooth connectivity or an associated mobile app. This means that we will not have to

contend with computer security concerns and related ethical dilemmas, as hackers will be unable to

modify the operation of the arm without direct access to the hardware.

5.1.2 Battery Concerns

Lithium-ion based batteries are volatile by nature, and they can catch on fire or even explode if not

charged properly or exposed to extreme temperatures. Overheating of the battery can be caused by an

internal short circuit due to contaminants introduced in manufacturing [15]. However, these events are

fortunately rare- the worst failure rates experienced (i.e. the ones that trigger device recalls) are

generally around one in 200,000 [15]. Since we are not creating the power circuits as part of our project,

we will work closely with Psyonic to make sure that the existing power circuit conforms to safety

standards. Our team and Psyonic will also ensure that the specific batteries used in our prototype have

no defects and work properly.

5.2 Future work
Our proof of concept project is successful. However, for the production design, we can replace our lead-

oxide t-stop layer on the pressure sensor with a gold etched layer. This will further improve the

precision of the pressure sensors, which will in turn increase the classification accuracy. Given the time

constraints, we only collected test data from one user; we need to collect more data from amputees to

analyze the confidence interval of our classification result and evaluate its performance. Finally, we can

develop synchronization logic to fix our SPI bugs and enable real-time data collection.

20

References

[1] A.l Lauer, K. Longenecker Rust, R. O. Smith. Factors in Assistive Technology Device
Abandonment: Replacing “Abandonment” with “Discontinuance”. (2015) [Online]. Available:
http://www.r2d2.uwm.edu/atoms/archive/technicalreports/tr-discontinuance.html.

[2] Centers for Disease Control and Prevention. (2017, May). National Center for Health
Statistics: Disability and functioning. Retrieved from
https://www.cdc.gov/nchs/fastats/disability.htm.

[3] Industrial Safety and Hygiene News. (2014, February). Statistics on hand and arm loss.
Retrieved from http://www.ishn.com/articles/97844-statistics-on-hand-and-arm-loss.

[4] S. Micera, J. Carpaneto, and S. Raspopovic, “Control of hand prostheses using peripheral
information,” IEEE Reviews in Biomedical Engineering (R-BME), vol. 3, pp. 48–68, 2010.

[5] Koiva, Risto, et al. “Shape Conformable High Spatial Resolution Tactile Bracelet for
Detecting Hand and Wrist Activity.” 2015 IEEE International Conference on Rehabilitation
Robotics (ICORR), 2015, doi:10.1109/icorr.2015.7281192.

[6] Psyonic. (n.d.). Technology. Retrieved October 10, 2017, from
http://www.psyonic.co/technology/.

[7] 28/40/44-Pin, Low-Power, High-Performance Microcontrollers With XLP Technology.
DS40001412G. Revision G. Microchip Technology Inc. 2016. Retrieved October 4, 2017, from
http://ww1.microchip.com/downloads/en/DeviceDoc/40001412G.pdf.

[5] Radmand, Ashkan, et al. “High-Density Force Myography: A Possible Alternative for Upper-
Limb Prosthetic Control.” Journal of Rehabilitation Research and Development, vol. 53, no. 4,
2016, pp. 443–456., doi:10.1682/jrrd.2015.03.0041.

[6] Ravindra, Vikram, and Claudio Castellini. “A Comparative Analysis of Three Non-Invasive
Human-Machine Interfaces for the Disabled.” Frontiers in Neurorobotics, vol. 8, 2014,
doi:10.3389/fnbot.2014.00024.

[7] Weiss, Karsten, and Worn, Heinz. “The working principle of resistive tactile sensor cells.”
IEEE International Conference Mechatronics and Automation (ICMA), vol. 1, 2005, pp. 471–
476.

[8] I2C-Bus Specification. UM10204. Version 6.0. NXP Semiconductors. 2014. Retrieved
October 4, 2017, from http://cache.nxp.com/documents/user_manual/UM10204.pdf.

http://www.r2d2.uwm.edu/atoms/archive/technicalreports/tr-discontinuance.html
https://www.cdc.gov/nchs/fastats/disability.htm
http://www.ishn.com/articles/97844-statistics-on-hand-and-arm-loss
http://www.psyonic.co/technology/
http://ww1.microchip.com/downloads/en/DeviceDoc/40001412G.pdf
http://cache.nxp.com/documents/user_manual/UM10204.pdf

21

[9] 500 mA Low-Noise LDO Voltage Regulator. SPX3819. Revision 2.0.0. Mouser Electronics.
2012. Retrieved November 4, 2017, from
http://www.mouser.com/ds/2/146/SPX3819_DS_R200_082312-17072.pdf.

[10] ARM Cortex-M4 32b MCU+FPU, 105 DMIPS, 256KB Flash/64KB RAM, 11 TIMs, 1 ADC,
11 comm. Interfaces. STM32F401xB. Mouser Electronics. Retrieved October 5th, from
http://www.mouser.com/ds/2/389/stm32f401cb-956305.pdf.

[11] Panagiotakopoulos, Constantinos, and Petroula Tsampouka. "The stochastic gradient descent

for the primal l1-svm optimization revisited." Joint European Conference on Machine Learning

and Knowledge Discovery in Databases. Springer, Berlin, Heidelberg, 2013.

[12] Maaten, Laurens van der, and Geoffrey Hinton. "Visualizing data using t-SNE." Journal of

Machine Learning Research 9.Nov (2008): 2579-2605.

[13] Institute of Electrical and Electronics Engineers. (n.d.). IEEE code of ethics. Retrieved
September 21, 2017, from http://www.ieee.org/about/corporate/governance/p7-8.html.

[14] Touch Bionics. (n.d.). I-limb ultra. Retrieved September 21, 2017, from
http://www.touchbionics.com/products/active-prostheses/i-limb-ultra.

[15] Cadex Electronics. (n.d.). Lithium-ion safety concerns. Retrieved September 21, 2017, from
http://batteryuniversity.com/learn/archive/lithium_ion_safety_concerns.

Appendix A Requirement and Verification Table

Table 5 : System Requirements and Verifications

Requirement Verification Verification
status

(Y or N)

Pressure sensors must provide
approximately 5 mm spatial resolution.

A. Set up the voltage divider circuit

in Figure 7 for a single tactile cell.

B. Apply a constant load to the

center of the electrode for this cell.

C. Note the voltage output for this

case.

D. Apply the same constant load to a

points 5 mm and 10 mm away from that

central point.

Y

http://www.mouser.com/ds/2/146/SPX3819_DS_R200_082312-17072.pdf
http://www.mouser.com/ds/2/389/stm32f401cb-956305.pdf
http://www.ieee.org/about/corporate/governance/p7-8.html
http://www.touchbionics.com/products/active-prostheses/i-limb-ultra
http://batteryuniversity.com/learn/archive/lithium_ion_safety_concerns

22

E. Verify that the output voltage is

significantly different (i.e., not within the

sensor tolerance) from the original.

F. Repeat for the other cells to verify

that all are working properly.

Pressure sensors should provide sufficient
accuracy such that level changes (0, 0.25F,
0.5F, 0.75F, F where F is full force) can be
easily distinguished (i.e. not within 5% of
each other).

A. Set up the voltage divider circuit

in Figure 7 for a single tactile cell.

B. Apply the maximum expected

load (“full force) to the center of the

electrode for this cell.

C. Note the voltage output for this

case.

D. Repeat steps B and C for the

other force levels.

E. Verify that the voltages measured

for the five different force levels are not

within 5% of one another.

F. Repeat for the other cells to verify

that all are working properly.

Y

The ADC conversion time needs to be less
than 4.167 ms (this comes from dividing
the time per sampling interval (50 ms) by
the number of pressure sensors per board
(12)). Note: all five pressure boards
sample their inputs in parallel.

According to its datasheet,

PIC18LF2XK22 allows the user to set

the ADC sampling rate and acquisition

time appropriately.

A. Set the ADCS bits of the

microcontroller’s ADCON2 register to

111 to configure the ADC’s conversion

clock as a dedicated internal oscillator

(600 KHz).

B. Set the ACQT bits of the

microcontroller’s ADCON2 register to

configure the acquisition time. Try

values of 101, 110, and 111 (12TAD,

16TAD, and 20TAD respectively; at least

10TAD is required for 10-bit

conversion).

C. Select an input channel by setting

the CHS bits, and set the GO/DONE’ bit.

D. The ADC will sample the input

for the selected time and automatically

begin the conversion.

E. Read the result (placed in the

ADRES register).

F. Repeat the above process for the

remaining 11 ADC input channels.

Y

23

G. Repeat steps C-F in a loop of 100

iterations.

H. Measure the time it took to do

this (should take less than 5 seconds).

The sampling microcontroller needs to
have at least 12 functioning input ADC
pins.

PIC18LF2XK22 has 17.

A. Setup the ADC module as

described in the verification procedure

above.

B. Attach an oscilloscope probe to

an ADC input channel and set the

oscilloscope to measure average voltage.

C. Apply force to the corresponding

pressure sensor, noting the converted

ADC result.

D. Verify that this result is within

ADC tolerance (3.3 V/1023) of the

average voltage value measured by the

oscilloscope.

E. Repeat the above process for all

12 in-use input channels. This will verify

that they are all functioning as expected.

Y

The sampling microcontroller needs to run
at least 1 MHz.

According to its datasheet,

PIC18LF2XK22 has a CPU that is rated

at up to 16 MIPS, depending on the

speed the onboard configurable clock is

set to.

A. Write a small test program for the

microcontroller, noting the total number

of instructions that should be executed.

B. Load the program into program

memory and run it, recording the

execution time for each one (for

programs with many instructions, it is

reasonable to do this without an RTC).

C. Verify that the execution time is

reasonably consistent with the onboard

clock speed.

Y

The sampling microcontroller needs to be
able to communicate with the control
MCU with a data rate of at least 19.2 Kbps
(this is because each of five slave
microcontrollers need to send 24 bytes of
data to the master in each 50 ms window).

This can be done via the SPI

communication protocol- according to its

datasheet, PIC18LF2XK22 has two SPI

peripherals.

N

24

A. Form a data packet of size 24

bytes (12 pressure sensors, each of which

provide a 2-byte value).

B. Send it to the control MCU over

the SPI bus.

C. Repeat the above process 1200

times (i.e. use a loop).

D. Time the process above and

verify that it took less than one minute to

complete (one minute indicates a data

rate of 19.2 Kbps).

The control microcontroller must be
clocked at at least 20MHz

With a loop in assembly, we can count the
cycles it takes to execute the simple
program. Using this information, we can
calculate how many cycles per second the
microcontroller operates

Y

The control microcontroller must be able
to handle 32-bit float point calculations

A. Write a test program featuring 32-

bit floating point addition, subtraction,

multiplication, and division.

B. Load the program into the

microcontroller’s program memory and

run it.

C. Verify that the output produced is

the same as the output of an equivalent

program running on a desktop PC.

Y

The controller can support the required

data transmission speed (19.2 Kbps)

over SPI based on our data structure

size calculation.

A. Verify the max frequency is

greater than the required speed in the PC

based config tool.

B. Transmit data over the SPI

interface, measure the clock and data line

frequency to verify that the bit rate is

higher than that of the requirement.

Y

Linear separability: Training Accuracy must
be at least 90% using a linear SVM
classifier on 10 samples for each
movement class.

A. Read 100 pressure sensor array

samples for each movement class,

randomly take 10% of sample as training

set.

B. Train one-vs-all hard Support

Vector Machine on each movement class

C. Evaluate on the same data set

obtained in Step A. The accuracy

measured must be at least 90%.

Y

25

The elapsed time between the beginning
and the ending of training execution of
10000 iterations on the Control MCU must
be under 30 seconds.

A. Generate random mock training

set with 10 example patterns for each of

the 6 class independently

B. For 10000 iterations, randomly

choose a sample from training set

mentioned in A, and run Stochastic

Gradient Descent on the example with

our classification model with the

classification algorithm we decided to

use

C. Verify that time used for the

training process over 10000 iterations is

finished in under 30 seconds

The algorithm for classification model
must be able to achieve at least 70%
accuracy on a testing set at least 5 times
larger in size than the training set

A. Read 100 pressure sensor array

patterns for each movement class on a

user

B. Randomly sample 10% of the

collected patterns from each class as

training, the rest 90% of the patterns as

evaluation set.

C. Use each of the trained classifier

to predict on evaluation set in Step B.

Verify that the prediction accuracy on the

evaluation is over 70%

Y

Appendix B Pressure board verification data

Figure 15: Results verifying the pressure sensor accuracy. We were able to achieve a linear response from the sensor

26

Figure 16: Results verifying the pressure sensor spatial resolution. 5 mm is on the sensor's edge. Resolution is adequate but
could be improved with gold etched t-stop and better foam.

Figure 17: Results verifying the ADC conversion accuracy for all channels. The data was collected by measuring the analog
sensor output and the ADC sensor output at the same time. "Error" refers to the absolute value difference between the two

values.

27

Appendix C Board Layouts

Figure 18: Layout of the pressure board PCB

28

Figure 19: Layout of the control board PCB

