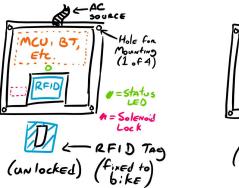
Universal Bike Sharing Lock

Group 16 Patrick ODonnell, Armin Mohammadi, Jihoon Lee

Problem

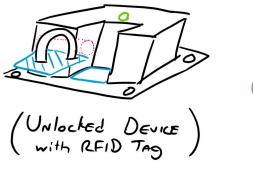
- Bike sharing services increasing in popularity in urban areas (Chicago, NY, etc.)
- No similar services for mopeds or scooters (faster than bikes, cleaner than cars)
- How to widen scope of a bike-sharing service?

Solution



• Create a **universal bike sharing lock**

- Allow bikes, scooters, and mopeds be shared in rental service
- No custom bikes needed
- Emulate similar services like Divvy and Zipcar
- Main Requirements
 - Quick, easy unlocking of bike for rental
 - Fast, secure locking of bike for return
 - Device must have constant source of power to preserve security of bike


Top VIEW

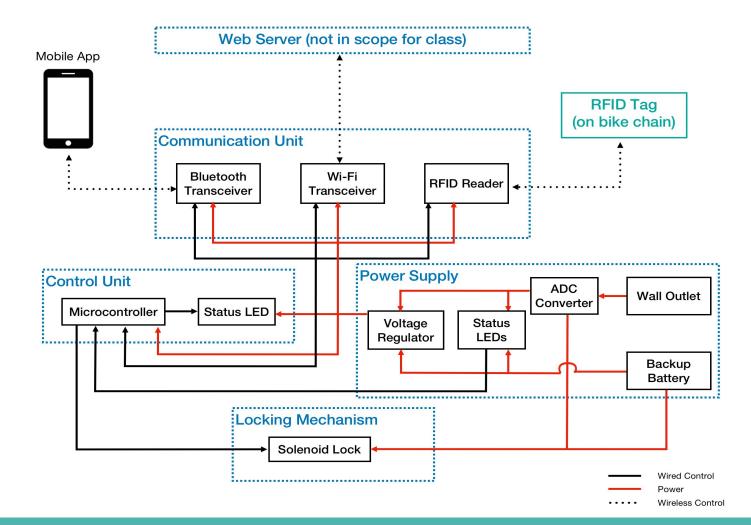
MCU, BT, Etc.

(locked)

Angle View

*Affixed to bike

- Locking Mechanism
 - Designed with push-pull solenoid
 - Opens and closes based on current flowing through it
- Power Block
 - \circ ~ Convert AC power from outlet to DC ~
 - Drop down to appropriate levels for locking mechanism, control unit, etc.
- Control Block
 - Executes logic for renting/returning a bike (i.e. when to lock and unlock)
- Communication Block
 - Bluetooth for rental, RFID for return, Wi-Fi for sending data to server

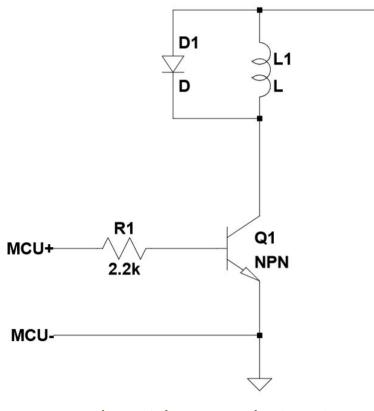


Challenges

• Power

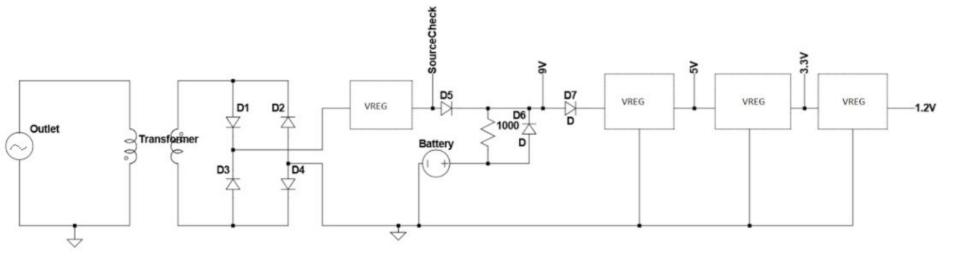
- All components need to be powered at all times (for security and proper functionality)
- Different components need different levels of power
- System integration
 - Need all components to work together properly
 - Communicate between components

Locking Mechanism


- Automatically controlled
 - Using **push-pull solenoid**
 - Pushes and pulls based on current flow
 - Chosen to guarantee proper locking/unlocking
 - Instant opening and closing
- Use BJT-Diode circuit to toggle solenoid on and off with constant voltage
 - Driven by MCU I/O pin

Solenoid

- Needs 6.5-12V and 1A of current to operate swiftly and properly
 Requires extra 250 mA to initially drive solenoid
- Stays locked (pushed out) until voltage drops below 3.11V
- Designed to prevent bike chain/wire from being detached from device when fully installed in body


9V

Solenoid Control Circuit

Power

- Integral to security of bike
- Power needs for device:
 - Solenoid lock needs ~ 9V with 1A when driven
 - Various control devices (MCU, Wi-Fi, RFID, etc.) need 1.2 5V each
- Implementation
 - Constant power source from wall outlet
 - Use automatic backup battery for temporary use (for emergency power loss)
 - Used NiMH rechargeable 9V batteries
 - MCU detects power cut and sends alert over Wi-Fi to server
 - Put control unit in low-power mode to extend battery life

Power Conversion Circuit

Power R&V + Results

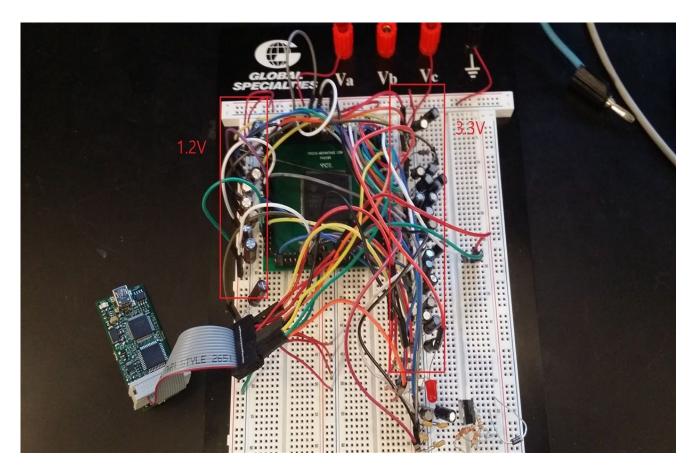
• Voltage Regulation

Ο

Measured (V)
9.105
4.998
3.305
1.25

- Battery Recharged at a rate of 0.1mA
- Battery would last ~40 minutes
 - Discharge at a rate of 1mV/s
 - Locking mechanism uses more power when opening and closing
 - Drains current battery faster

Control Unit

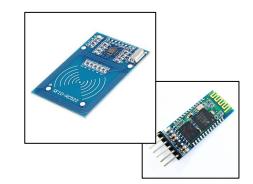


- Center of all functionality
 - Drives solenoid lock
 - Handles information to/from communication unit
 - RFID, Bluetooth, Wi-Fi

• Microcontroller: TI C2000 Delfino Dual-Core MCU

- Maximum 200MHz operation frequency
- Supply voltage: 1.2V (core), 3.3V (I/O)
- Various connectivity options (UART, SPI, USB, CAN, I2C)
- 1MB internal flash memory
- \circ 400 MIPS per cpu, 800 MIPS total

MCU on Breakout Board


Control Unit R&V

- UART communication with Bluetooth module and Wi-Fi module with Baud rate of 9600
 - Verification: Check serial terminal data output
- Activation of low power mode when power supply fails (less than 200mA core current consumption)
 - Verification: Measure current through the core power supply
- Server is notified of power failure within 20 seconds
 - Verification: Time duration from DC disconnect to server notification

Control Unit Results

- Successful printout of data from MCU (both over Wi-Fi and Bluetooth serial terminal)
- Core current consumption decreased from 187mA to 155mA
 - Static Power consumption (V * I): 0.224mW -> 0.186mW
 - Idle mode reduces 5mA of additional current draw
- Server instantly received power failure system message from MCU (w/ Wi-Fi) when DC source disconnected

Communication Unit

Bluetooth

- For remote unlocking when renting
- Initially planned to use TI CC2640R2F Bluetooth chip
- HC-05 Module
 - Wireless Bluetooth serial transceiver
 - 1 UART channel

RFID

- For automatically locking upon bike return
- MFRC522 Module
 - Passive (with range of ~1 inch)
 - 1 SPI channel

Communication Unit

• Wi-Fi

- Used for sending real-time alert of DC power loss
- Can be used for relaying rental data to vendor
- TI CC3200 SimpleLink Wi-Fi Unit

Implementation

- All communication modules controlled by MCU
 - Bluetooth
 - Sends user request to MCU
 - Receives acknowledgement message from MCU
 - Wi-Fi
 - MCU sends system message to Wi-Fi module.
 - Wifi module relays the message to the server through TCP protocol
 - RFID
 - RFID module sends a single data bit depending on the presence of ID tag

Communication Unit R&V

- A mobile device can communicate via Bluetooth 3 ft away
 - Verification: Lock/Unlock functionality through commands on Bluetooth serial terminal
- Must be able to communicate with an independent TCP server at 8Mbps
 - Verification: Confirmation of server message delivered from wifi module on the power failure sequence

Communication Unit Results

- Solenoid lock was released when command was sent by the bluetooth terminal on the mobile device
 - Could communicate with Bluetooth from opposite side of lab
- Right after disconnecting the main power source, system message containing power failure warning was received through the TCP server running on a PC (Python)

Overall Results

- Able to complete locking/unlocking logic with MCU (Bluetooth and RFID)
 - RFID handled with Arduino (which talks with MCU via UART) due to SPI complexity and time constraints
- Able to power all electronic components
 - Can successfully switch from DC to battery and keep components powered
 - Used 9V rechargeable batteries, larger battery would be longer lasting
- Wi-Fi capability implemented
 - Completed back-up alert
 - Potential to expand to send rental/return data to a server (for a bike sharing service)

Demo of Unlocking/Locking Functionality

Demo of Power Alert Over Wi-Fi

(See Local Video)

Demo of Power Alert Over Wi-Fi 2

Conclusions

- Many electronic parts with varying states use up variable amounts of power
- Can avoid security problems if safety less reliant on constant source of power (i.e. lower power requirements of system)
- Multiple functionalities important for making complete system (RFID/BT for rental, Wi-Fi for data relay, locking mechanism), but harder to integrate together in practice than in theory

Potential Improvements

- Utilize locking mechanism with lower power sink
- Opt for active RFID (for easier scanning)
- Cheaper MCU
- Use larger, more powerful rechargeable backup battery
- Collect rental information and send to server
 - The "service" part of a bike sharing service

Lessons Learned

- Repeatedly iterating to improve and better focus an idea/design
- When/how to modify design to achieve end goals by a deadline
- Integrating many components into one cohesive system
 MCU controlling all components, powering all electronics sufficiently

Thank You!

Sources

[1] W. Hu, "More New Yorkers Opting for Life in the Bike Lane," 30-Jul-2017. [Online]. Available: https://www.nytimes.com. [Accessed: 18-Sept-2017].

 [2] S. Dave, "Life Cycle Assessment of Transportation Options for Commuters." [Online]. Available: http://files.meetup.com/1468133/LCAwhitepaper.pdf.
 [Accessed: 19-Sept-2017].

[3] I. M. International, "How Divvy Works: Join, Unlock, Ride, Return," Divvy Bikes. [Online]. Available: https://www.divvybikes.com/how-it-works. [Accessed: 04-Oct-2017].

[4] "How Does Zipcar Work?," Car Sharing from Zipcar: How Does Car Sharing Work? [Online]. Available: http://www.zipcar.com/how. [Accessed: 04-Oct-2017].

[5] "South Side, Chicago, IL. to North Side, Chicago, IL. at 11:00AM CST by Car.," Google Maps. [Online]. Available: https://www.google.com/maps. [Accessed: 04-Oct-2017].

[6] Texas Instruments, "TMS320F2837xD Dual-Core Delfino Microcontrollers" [Online]. Available: http://www.ti.com/lit/ds/symlink/tms320f28377d.pdf. [Accessed: 03-Oct-2017]

[7] Texas Instruments, "CC2640R2F SimpleLink Bluetooth low energy Wireless MCU" [Online]. Available: http://www.ti.com/lit/ds/symlink/cc2640r2f.pdf. [Accessed: 03-Oct-2017]

[8] NXP Semiconductors, "MFRC522" [Online]. Available: https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf. [Accessed: 03-Oct-2017]

[9] Texas Instruments, "CC3200 SimpleLink Wi-Fi and Internet-of-Things Solution, a Single-Chip Wireless MCU" [Online]. Available: http://www.ti.com/lit/ds/symlink/cc3200.pdf. [Accessed: 03-Oct-2017]

[10] IEEE.org, "IEEE Code of Ethics", 2017. [Online]. Available: http://www.ieee.org. [Accessed: 19-Sept- 2017]

[11] Arduino, "How to Drive Solenoids with Arduino" [Online]. Available:

http://playground.arduino.cc/uploads/Learning/solenoid_driver.pdf. [Accessed: 03-Oct-2017]