Prosthetic Control Board

Team 46

Daniel Lee & Caleb Albers

11.3

people with hand amputations worldwide.

80% ③

live in developing nations.

have access to adequate, affordable, prosthetic devices.

data courtesy of Psyonic

Abstract

The Aim:

- Provide inexpensive and feature-filled prosthetic devices
- Have all costs covered by insurance

The Next Steps:

- Migrate to a new microcontroller architecture (ARM)
- Release product under FDA Class I specification
- Prepare for mass-production

$P \leq \checkmark \square \cap \square \square$

"Redefining human."

Objectives

- PCB that fits in PSYONIC's current hand
 - Interface with motors, sensors, and other subsystems
- New microcontroller architecture (ARM)
- Multiple I²C connections for pressure sensors
- On-board temperature sensor
- Status LED
- Conformal coating

Modules & Sub-Components

CAD MODEL Artist's Rendition →

Tight physical constraints determined the shape and size of our circuit board.

DIMENSIONS & Constraints

These constraints are vital to a manufacturable system.

Board size drove component package selection.

Encoder Calculations

- 2 hall effect sensors
- 6 magnetic regions on the rotor
- Motor RPM: ~32000
- 10% tolerance for speed
- Max frequency: ~7000 Hz

Schematics

Goals:

- Modular and flexible
- Unit testable
- Heavily documented

Standards Cognizant:

- IEC 62304
- NASA's "The Power of Ten Rules for Developing Safety Critical Code"

Software Architecture

- Implementation of Real Time Operating System (RTOS)
 - Multiple threads
 - Heavy preemption from Interrupt Service Routines (ISRs) for encoders
 - Watchdog thread for monitoring critical error conditions
- Custom USB Device library
- All libraries have documented APIs
- Reversible Design
 - No software changes needed between operating in left-hand or right-hand mode
 - Standard medical finger/digit numbering scheme used
- Extendable grasp framework

STA f	RT I	N 20	licrocontrol Points	ler
		Requirement	Verification	Points
		Output I2C Signal, Communicate with I2C	Verify with logic analyzer, Read data from I2C sensor	8
		Interpret Sensor Data	Connect I2C sensor and stream output to serial console	6
		Detect Rotor Movement & give relative position	Attach encoders and spin both ways, verify output position	6

I2C Protocol

Write Command

Telling temperature sensor to go to temperature register

0x1A left shifted by 8 + 0x80 = 0x1A80 0x1A80 = 6784 6784/256 = 26.5 celsius

Tesperature: 21	PressureErawhi 3934857.000000	Pressure(hPa): \$68.658447	Encoder Count: -6
Tesporature: 21	Pressuretravi: 3934855.000000	Pressure(hPs): 568.668498	Encoder Count: -6
Temperature: 21	Pressure[ravis 3935825.000000	Pressure(6Pa): 968.699463	Encoder Count: -6
Texperature: 21	PressureErawls 3934928.000000	Pressure(hPa): 968-673828	Encoder Count: -6
Temperature: 21	Pressure(raw): 3834922.000000	Pressure(hPs): 968.674316	Encoder Count: -6
Temperature: 21	Pressuretravit 3135885.000000	Pressure(hPa): 968.695312	Encoder Count: -0
Temperature: 21	PressureEnavis 3935126-000000	Pressure(hPa): 968-724321	Encoder Count: -6
Tesparature: 21	Pressuretravi: 3935923.000000	Pressure(hPa): 968.698975	Encoder Count: -6
Temperature: 21	Pressure1ravit 3835817-000000	Pressure(hPa): 968-695312	Encoder Count: -6
Terrete contractor St	Frequencies (Construction States on the States)		

Motor Controllers 15 Points

Requirement	Verification	Points
Command motor controllers via PWM	Verify motors can drive both forward and reverse	3.75
Improved connector resilience to improper use	Attempt various connections with incorrect orientations	3.75
Connector can withstand 1.5 Amp current	Setup test load and verify no damage after 30 seconds	3.75
Conformal coating present	Visually inspect surface	3.75

A

Pressure Sensors 7 Points

Requirement	Verification	Points
Communicate over I2C	Connect sensor and stream pressure value to serial console	7

~			

fereparature: 24	Pressuretrast: 4328247.000000	Pressure(hPa): 1654.747883	Encoder Count: 8
Resperature: 24	Pressure(rav) (4335784.000000	Pressure(bPa): 3658.543836	Encoder Counts 0
Tesperature: 26	Pressure(rev): 4355995.000000	Pressure(hPs): 1055.095820	Encoder Count: 9
fesperature: 24	Pressure[raw1: 4401105.000000	Pressure(hPa): 1674.566361	Encoder Count: 8
fesperature: 24	Pressure(raw): 4426545.000000	Pressure(hPa): 1000.797363	Encoder Counts 8
Reperature: 26	Prossure[ray]: 4468482.000000	Pressure(hPs): 1006.055175	Encoder Count: 8
Temperature: 24	Pressuretrasi: 4473555.000000	Pressure(hPa): 1863.641357	Encoder Count: 8
Fesperature: 24	Pressure(rm/): 4487586.000000	Pressure(hPa): 1895.484863	Encoder Counts 8
Tesperature: 26	Pressure(rev): 4453534,888888	Pressure(hPs): 1895-833496	Encoder Count: 0
Responsture: 24	PressureLrawl: 4403305.000000	Pressuret hPals 1057-000577	Encoder Counts 8
leaperatur			

Temperature Sensor 3 Points

Requirement	Verification	Points
Communicate over I2C	Stream output in °C to serial console	1
Has accuracy of ±1° C	Verify temperature reading with an external sensor	1
Simulate safety shutdown	Apply a heat gun to raise board temperature to 55° C and ensure: LED turns red Motors turn off	1

			111-
apenaturei 53 aperaturei 53	Pressure(raw): 4006254.400000	Andrew County 1 Encoder County 1 Encoder County 1	4

Temperature: 53 Pressure(rav): 4656254.00000 Pressure(rav): 465525.00000 Pressure(rav): 465525.00000 Pressure(rav): 4656269.00000 Pressure(rav): 4656265.000000 Pressure(rav): 4656265.000000 Pressure(bPa): 990.275973 Pressure(bPa): 990.275973 Pressure(bPa): 990.26458 Pressure(bPa): 990.26554 Pressure(bPa): 990.26649 Pressure(bPa): 990.264424 Pressure(bPa): 990.284424

Encoder Count: 1 Encoder Count: 1

FINISH	Requirement	Verification	Points
	Communicate over PWM	Turn LED on and off via microcontroller command	2
	Cycle through colors (white, red, green, blue)	Visually observe output from a demo program	2
	Light viewable from a 90° viewing area 1 foot away	Verify color is viewable 45° off center from 1 foot distance	1

Gamma Correction helps the true color.

The Natural Color System (NCS) was used for all visual across the world.

data courtesy of rgb-123.com

3D Rendering

Soldered Circuit Boards

Motors / Encoders

Assembled Prosthetic Hand

Cost reduces when buying components in bulkEstimated total project labor cost:\$67,200Estimated project materials cost:\$58Total prototype development cost:\$67,258

For the hand board...

Price based on bulk price breaks from reputable dealers

Data courtesy of octopart.com

\$9.85 Board & Assembly Cost

Board and assembly cost for 40 boards from PCBWay with kitted / cosigned components \$31.05 Total Hand Board Cost

Total combined hand control board price, fully produced, assembled, tested and shipped. & Regulatory Compliance

- PSYONIC prosthetic hand is slated for FDA approval
- Several industry standard compliance guidelines need to be met for fast-tracking FDA processes
- Our project kept three main guidelines in mind

Standards

- Best practices drove every engineering decision
 - Extensive ground plane usage
 - Insulation resistance testing
 - Application of urethane conformal coating

IEC 62304

Medical Device Software

IEC 62353

Medical Electrical Equipment, General Requirements for Safety UL94 V-1

Flammability Standard

Retrospective

Learning Curves

- Neither of us had much, if any, embedded programming experience
- This was the first time we have had PCBs manufactured

Difficulties & Hurdles

- USB Device libraries were previously non-existent for our microcontroller
- The STM32 interrupt handler proved inflexible and difficult to work with
- Difficulty in soldering various small packaged devices and confirming good connections

Future Work

This project <u>will</u> continue.

In order to make it viable, a few modifications need to be made for

the next revision.

BLDC Motors

Implement brushless DC (BLDC) motor control in order to provide greater speed and torque.

EMG Systems

Integrate with Coapt's off the shelf electromyography (EMG) system.

Back EMF

Use back EMF instead of quadrature encoders to gain better velocity estimation.

Certification

Verify compliance with 3rd party certification bodies, such as UL or CE.

Thank You