UNIVERSITY OF ILLINOIS AT
URBANA-CHAMPAIGN

ECE 445 TEAM #14

Child Development Sensor
Individual Progress Report

Yang An Tang (ytang46)

November 5, 2017

Contents

1 Introduction 1
1.1 Individual Objectives 1
1.2 Overal Progress e 1
1.3 Individual Progress 2

2 Design 2
2.1 Bluetooth Low Energy 2
2.2 Sensor Interface 5
2.3 WIFi .« . oo 7

3 Conclusion 9
3.1 Timeline oL 9
3.2 Ethics and Safety 9
3.3 Self-assessment L 9

1 Introduction

1.1 Individual Objectives

The overall goal for our project is to develop a system that enables researchers to study a child’s
development through accurate sensor data collection of heart rate and audio recording. This sys-
tem will be a wireless device that helps the researchers overcome human-error limitations during
experiments. The system comprises of a sensor node with most of the low-powered modules
will communicate with a main hub that will house the microprocessor for heavy computations,
for an added bonus multiple sensor nodes can connect to a single main hub for easy scaling of
experiments carried out. To breakdown this project, we have decided to split the development
work into three main portions. That is sensor development, communications (which include
Bluetooth ,WiFi, and sensor interface), and power electronics. I have been tasked to handle the
communications part of this project, sensor development (Eu Hong Woo) and power electronics
(Xiang Wen) will be led by my other teammates.

To further breakdown my section of the work into submodules, there are three main tasks to
carry out. They are the implementation of Bluetooth Low Energy (BLE), WiFi protocols, as
well as the general interface between sensor node and main hub. All of these submodules will
need to be robust enough to work all of the time and interface well with the other components
of the project, so heavy testing and verifications have to be done on my part.

OPTIONAL: Develop a simple mobile application or web application that pulls data down
from the server, eliminating the need for researchers to be present during experiments. Also,
allowing for data collection at home in a more natural environment as long as WiFi is available.

1.2 Overal Progress

Currently the overall team progress is on track based on our proposed project timeline except
for the PCB layout which we originally planned for it to be done by the 9th of November. Our
alternative for now is to lay out a simple shield for the sensor node that would house all off-
the-shelf modules which include the buck converter, ECG sensor, MEMS microphone, and the
Bluetooth module. For a second revision of the board, we will be striping down all of these
modules such that it has only the ICs and the necessary components to drive it on the board.

This way we will be able to minimize the PCB footprint. The reason for creating an initial
PCB shield is to provide a working system just in case we are not able to debug and get the
final revision working on time. We are prioritizing on getting the proposed functionalities fully
implemented and ready to go.

1.3 Individual Progress

Up till this point, Bluetooth Low Energy (BLE) is fully functioning and tested. More
on the function and validation details in 2.1. The next task is to develop an ADC to interface
with the ECG sensor’s analog output. For simplicity, the Bluetooth module’s on-board ADC
will be used for development purposes to make sure reading from ECG sensor works. Once
that has been established and if time permits, a standalone ADC will be built onto the sensor
node PCB interfacing the ECG sensor analog output to the Bluetooth module’s digital I2C input.

The last submodule to be developed is the WiFi implementation. We chose a Bluetooth and
WiFi combo module for both the sensor node and main hub, WiFi is disabled through software
for the sensor node to reduce power draw. Most of WiFi development will be writing firmware
code that reads data periodically from the microcontroller on the main hub then sending TCP
packets using MQTT protocols to an AWS server. For safety, data will be copied into some form
of local storage (e.g. USB stick, or on-board memory) in the event that WiFi does not function
as expected.

2 Design

2.1 Bluetooth Low Energy

SPI Bluetooth

—_— . Bluetooth .
12C link baseband RF receive
controller
= c
Clock £ 5
125 4 E
R — _generator | 3 &
SDIo o Wi-Fi -
- - Wi-Fi MAC baseband : RF) - W
UART ‘ _transmit
CAN Core and memory

[

Cryptographic hardware
2 x Xtensa® 32-bit LX6 acceleration

ETH Microprocessors

SHA RSA

»,

i

ROM SRAM
PWM) | _ AES RNG

Temperature

sensor RTC

Touch sensor
ULP

DAC PMU

N——

ADC

Recovery
coprocessor memory

;

Figure 1: ESP32 Block Diagram

Since designing a Bluetooth capable IC from scratch is not within scope of this course and also
not within my capabilities I have resorted to use an off-the-shelves module which is the ESP32

Bluetooth and WiFi module from Espressif Systems. Initially, we chose to use different Bluetooth
modules for the sensor node and main hub respectively because on the sensor node we would not
need a WiFi capable module. But I have since resorted to using the same ESP32 board for both,
having similar hardware saves on hardware and software development time. The block diagram
above in Figure 1 shows what the ESP32 hardware has to offer.

Firstly, to make sure that the ESP32 hardware provides sufficient throughput/bandwidth
for our purposes, a simple calculation was done. Each Write Command allows 20 Bytes of data
according to specifications. These packets do not provide any application level acknowledgement
of sending, and hence can be queued. Next, the lowest interval allowed is 7.5 ms and the maxi-
mum number of packets per connection event is 6.5]

Given number of packets per event as n, connection interval 7T, and a single command allows B
number of Bytes, the throughput is

1
Throughput =n x B X T (1)

where n = 6, T = 7.5 ms, and B = 20, total throughput is

1
Total Th hput = 20 X ————— 2
ota roughput = 6 x 20 x 50075 s (2)
=16 kB/s = 128 kbps (3)

which is more than enough for our system’s usage. Since only the microphone data will be using
up most of the bandwidth as it is running at 8 kHz to be able to capture audible speech.

Range and sensitivity is also another major consideration for our purposes. Since BLE on
sensor node will be transmitting and BLE on main hub will be transmitting and receiving re-
spectively, it is important that the line-of-sight range is at least the span of an average size room
in order for the connection to work. According to the ESP32 datasheet, it has a line-of-sight
range of 150 meters which is sufficient.

GATT server

Service

Characteristic

Service

Characteristic

........................

Figure 2: BLE GATT Server Structure

For the ESP32 firmware, a GATT server had to be setup according to BLE protocols for the
sensor node and main hub to communicate. GATT server specifications can be found at [6].

The main hub in this case will be referred to as the master and the sensor node as the slave. In
order for the slave to write to the master, a specific Service UUID which acts as the "address"
at which both the master and slave will be communicating at. The master will have to setup a
GATT Server that hosts the specific Service UUID so that the slave can connect to it. Within
a given service, there can be more than one characteristic which in this case denotes data from
sensors. Since we have both ECG and microphone sensors, there will be two characteristics with
unique given Characteristic UUIDs under the same Service. I have successfully implemented the
slave and master handshaking described above using the correct BLE protocols.

During development there were a few bugs namely scanning takes a long time due to too many
Bluetooth devices in the area and the written embedded application keeps dumping. To fix the
first problem, hardware scan rate was increased through the BIOS. For the second problem, the
user-program stack size was increased and heavy standard C libraries were omitted.

Below is the requirements and verifications table.

Requirement

Verification

Experimental throughput of 96 kbps which
consist of ECG sensor output (32 kbps) and

audio recording (825% = 64 kbps).

Wrote a test case that sends dummy data us-
ing the specified frequencies and checks to see
if any packets of data were dropped.

Master and slave completes handshaking pro-
tocol within 15 ms to prevent stack overflow
on slave since each server discovery eats stack
space.

Exception handler written to exit program
when 15 ms is over otherwise print connec-
tion established to serial stream and continue
running.

/* BLE Server initialization, advertising server, acknowledging client nnection
BLE.init ()
BLE.create(server)

* create server with service of "serviceUUID" and characteristic of "charUUID" */

BLE.server.create (serviceUUID)
BLE.server.create (charUUID, value)

f* start advertising server */
BLE.advertising(startc)

Figure 3: Pseudocode for BLE Master.

/* BLE Client initialization, co
BLE.init ()
while(l)
if(BLE.scan(serviceUUID)})
BLE.create(client)

nnecting to server,

and writing to specific service */f

check to make sure service exists */
if(VBLE. connect {serviceUUID->address}))
S o .

print "Failed to connect to
return
f* writes to service->characteristic->value */
BLE.write (address->charUUID, wvalue)
else
print "Failed to find server"”

Figure 4: Pseudocode for BLE Slave.

(<) yangan@yangan: ~/esp/cdst_server
Sampleserver: New value for character 0d563a58-196a-48ce-ace2-dfec78accsil.
Sampleserver: New value for character 0d563a58-196a-48ce-ace2-dfec78accsi.
SampleServer: New value for character 8d563a58-196a-48ce-ace2-dfec78acc8l
SampleServer: New value for character 8d563a58-196a-48ce-ace2-dfec78accsi.
Sampleserver: New value for character 0d563a58-196a-48ce-ace2-dfec78accsi.
New value for character 8d563a58-196a-48ce-ace2-dfec78acc8l
New value for character 0d563a58-196a-48ce-ace2-dfec78acc8l
New value for character ©d563a58-196a
New value for character 8d563a58-196a
New value for character 8d563a58-196a
New value for character 0d563a58-196a-48ce-ace2-dfec78acc8l
New value for character ©d563a58-196a-48ce-ace2-dfec78acc8i
Sampleserver: New value for character 0d563a58-196a-48ce-ace2-dfec78accsi.
Sampleserver: New value for character 0d563a58-196a-48ce-ace2-dfec78accsi.
SampleServer: New value for character 8d563a58-196a-48ce-ace2-dfec78acc8l
SampleServer: New value for character 8d563a58-196a-48ce-ace2-dfec78accsi.
Sampleserver: New value for character 0d563a58-196a-48ce-ace2-dfec78accsi.
New value for character 8d563a58-196a-48ce-ace2-dfec78acc8l
New value for character 0d563a58-196a-48ce-ace2-dfec78acc8l
New value for character ©d563a58-196a
New value for character 8d563a58-196a
value for character 0d563a58-196a
value for character 08d563a58-196a-48ce-ace2-dfec78acc8l.
value for character 0d563a58-196a-48ce-ace2-dfec78accsi:
SampleServer value for character 0d563a58-196a-48ce-ace2-dfec78accsl.
SampleServer value for character 0d563a58-196a-48ce-ace2-dfec78accsi.
SampleServer value for character 8d563a58-196a-48ce-ace2-dfec78acc8l:
SampleServer value for character 0d563a58-196a-48ce-ace2-dfec78accsi:
SampleServer value for character 0d563a58-196a-48ce-ace2-dfec78accsl.
value for character 8d563a58-196a-48ce-ace2-dfec78accsi.
value for character 08d563a58-196a-48ce-ace2-dfec78acc8l.
value for character 0d563a58-196a
value for character 0d563a58-196a
value for character 0d563a58-196a
value for character 08d563a58-196a-48ce-ace2-dfec78acc8l.
value for character 8d563a58-196a-48ce-ace2-dfec78acc8i.
SampleServer: value for character 0d563a58-196a-48ce-ace2-dfec78accsl.
SampleServer: value for character 0d563a58-196a-48ce-ace2-dfec78acc814:

yangan@yanga p _servers I

Figure 5: BLE Master successfully hosting server and receiving each packet from Slave.

In Figure 3 is the pseudocode for initializing and advertising a BLE GATT server. Once ini-
tialized, the program waits for an incoming connection request from the specified service UUID.
On the other hand in Figure 4, is the pseudocode for initializing a slave then scanning for the
specified service UUID before requesting to connect.

2.2 Sensor Interface

|37 wvoosracru

voDA GRIO23
Lna N GROIS
VDD3R3 GRIOS
VDD3P3 S0_DATAL
SENSORVP SD_DATAO
SENSOR C4PP DK
SENSOR_CAPN 50_CMD
SENSORVN SD_DATAZ
cHiPPU SO_DATA2
VDET! GROTT
VDET2 VDDSDI0
3K P GROIS.

-
I gESEH
F8ESS g
8
H

Figure 6: ESP32 Pinout Diagram [5]

The pins of interest in Figure 6 are GPI032-39 which are used by the on-board ADC, GPIO
25-26 used by I2S input, and for 12C any two GPIO pins can be programmed to act as SDA and
SCL pins respectively.

Firstly, the ADC which connects the ECG sensor which gives an analog output to the ESP32
should ideally be built rather than implemented by software on the ESP32 chip for added com-
plexity. But for faster development, the on-board ESP32 ADC will be used to prototype before
moving on to designing an ADC. To use the on-board ADC, there are 8 pins (GP1032-39) that

are used since it is an 8-channel ADC but only one will be wired in our case.

Vdd
1

8-lineto
3-line
priority |
encoder .
I— - Binary output

Figure 7: 3-bit Flash A/D Converter 7|

To design an ADC, I have settled on a parallel A/D converter as it is the simplest to implement.
It is simply a series of comparators, each comparing input signal to a chosen reference voltage.
Then, the comparator output connects to the inputs of a priority encoder which produces a
binary output. Above in Figure is a 3-bit flash A/D converter example. A flash A/D converter
is also the most efficient in terms of speed, the limiting factor being only the gate propagation
delays of the encoder. But, unfortunately it requires the most number of components to build.
The number of comparator op-amps doubles with each additional output bits,

3 bits = 23 — 1 = 7 comparators (4)
4 bits = 2* — 1 = 15 comparators (5)
5 bits = 2° — 1 = 31 comparators (6)

For our use an 8-bit ADC would need 255 comparators which is not ideal to design. ToDo: If
time permits, research other ADC design and implementations.

Since the on-board ADC only outputs at 12-bits, each integer output value will have to be
bit-aligned to 32-bits. This will reduce the resolution of the output waveform when plotting
according to the needs of the sponsoring researchers. ToDo: Will need to test accuracy and
validity of on-board ADC' output.

Below is the requirements and verifications table assuming that the on-board ESP32 ADC is
used.

Requirement Verification

Able to output 32-bit integer values for each | ToDo: Write a test script that samples the
analog read since ECG waveforms can be | voltage readings from the ECG sensor and
plotted given a sample rate of at least 500 | plots out the waveforms. Check the waveform
Hz. against a reference waveform.

Next is the I2S input from the MEMS microphone which is being done by Eu Hong Woo. He
is currently writing the firmware initialization for 12S on the ESP32 board. The board has two
I12S peripherals [5] but only one will be configured via the 12S driver to support reading input
from the microphone. He will also be heavily testing the I2S interface to ensure full functionality.

2.3 WiFi

WiFi will only be enabled on the ESP32 chip that is on the main hub and connected to the
microcontroller. The general idea is for the ESP32 chip to read data over serial using 12C pro-
tocols from the microcontroller, then sending the TCP packets using MQTT protocols to the
AWS IoT server. To establish MQTT connection, the WiFi client must first request connection
with a unique client ID, once connected the client can start publishing to the specific topic that
is setup by the server.

ToDo: Will have to first setup AWS IoT server with MQTT protocols enabled and initialized.
More specifically, a unique topic for each data points (ECG and audio) will be advertised. This
can be done through the AWS online console or through ssh. Then, the firmware for the ESP32
on the main hub will have to be modified to include WiFi specific function declarations and im-
plementations together with the AWS and MQTT API calls.

/* Pseudocode: WiFi connect to AP and send to AWS IoT using MQIT protocol */

/* Initialize WiFi
wifi.init()
if (!wifi.connect (RF))
print "Failed TO CORNEcCT TO access point: %x", AP
return

even handler and

/* Connect and initialize MQIT cC
if ('AWS.connect (clientlID))
print "Failed to connect to AWS server of ID: ¥x", clientID

return
AWS.init()

/* Read from m
* Publish o

ller using I2C protocol

pecific MQIT topic

while(.)
wvalue = I2C.read(microcontroller)
LWS.publish(value)

LWS.disconnect ()

Figure 8: Pseudocode for WiF1i algorithm that publishes to AWS Server.

The above pseudo-algorithm in Figure 8 is very simple compared to the actual implementation
because it omits most of the configuration declaration such as callback functions, hardware pin
settings, drivers, Rx/Tx buffer, NVS structure etc. Callback functions in this case will be called
anytime a Tx packet is sent, e.g. to read next value in 12C serial buffer. Since data will be coming
in from GPIO pins, these pins have to be setup to accommodate 12C protocols (SDA, SCL pins).
Next, the Rx/Tx buffer acts as a queue since the program has to wait for an receive acknowledge
before sending the next packet, a buffer queue is needed to maintain First-In-First-Out (FIFO)
arrangement.

A problem that I have been facing is when enabling both WiFi and Bluetooth libraries on the
ESP32 hardware, the entire embedded firmware seems to crash as if there is not enough stack
space for so man libraries. The kernel code runs just fine when only WiFi or Bluetooth is enabled
one at a time. Increasing the stack space works only on some occasions and not all the time
because every new call to WiFi or Bluetooth class eats up stack space. There are a couple of
probable solutions queued up such as going through the libraries one-by-one and omitting files
that are not used, creating a intermediate virtual memory map so that every new task will not
override kernel code. As a contingency plan if I am still not able to sort this out, I will then just
use two separate ESP32 chips, one for Bluetooth and one for WiFi.

Below is the requirements and verifications table.

Requirement

Verification

ESP32 able to properly read from microcon-
troller GPIO pins using 12C protocol at a rate
of 115200 baud or more. This is so that there
are enough samples per second to reproduce
clear audio recordings.

ToDo: Manually send the data length each
interval so that ESP32 program can check in-
tegrity of received data.

ESP32 able to connect, subscribe, and pub-
lish to specified AWS MQTT topic.

ToDo: Write AWS Lambda verification
script that throws an exception when there
is a failed connect or a sudden disconnect for
logging and debugging purposes.

AWS MQTT server setup such that it is able
to create new topics, delete old topics, receive
topic updates, and publish to existing topics.

ToDo: Use open-source MQTT client appli-
cations to test AWS server by trying to sub-
scribe to existing topic, publish to existing
topic, unsubscribe from existing topic.

main hub data
processing output

b

ESP325 cache
storage

AWS loT API call

Yes
AWS cloud
server

Immediate request to fetch data

Invoke AWS Lambda
Phone application

Figure 9: Flowchart for AWS data back-end.

AWS 53 storage

Delayed request to fetch data

The above flowchart shows the general data pipeline from the main hub microcontroller all the
way to the users either through local storage or online server.

OPTIONAL:

If I am ahead of schedule, I will work on creating a mobile phone or web
application that pulls selected chunks of data from the AWS server.

A simple Ionic frame-

work based mobile phone application can be written with back-end API calls to AWS. Ionic is
used because instead of developing Android or iOS independently, Ionic allows development in
HTML/Javascript which can then be ported over to either mobile OSes.

3 Conclusion

3.1 Timeline

Deliverables Due Dates
ESP32 firmware to send test data (slave) Done
ESP32 firmware to host GATT server (master) Done
ESP32 master and slave communication Done
PCB rev 1 design and layout 9th November
ESP32 ADC implementation 9th November
ESP32 interface with sensors 16th November
PCB final rev design and layout 18th November
ESP32 working WiFi drivers 25th November
Debug and test PCB 2nd December
Cloud integration with AWS API 2nd December
OPTIONAL: phone application 2nd December

As of today, Bluetooth Low Energy drivers for our program have been fully implemented and
tested. Individual checkpoints are to implement ADC, first with ESP32 on-board 12-bit 8-
channel ADC or building an off-board ADC. For the sake of time, I have chosen to develop with
the on-board ADC first. Next on my schedule is to write working WiFi firmware for the ESP32
main hub program that will serve as the interface to the AWS server. The last thing on my end
is the setup and configuration of an AWS IoT MQTT server with unique topics for each data
point. Finally, PCB layout, design, and debugging is a group effort.

3.2 Ethics and Safety

ACM Code of ethics stated that we ought to respect the privacy of other [2]. The microphone
in the design enables constant recording for research purposes, to protect the privacy of an in-
dividual, extra precautions will be taken to ensure the accurate data obtained is protected from
unauthorized access or accidental disclosure to inappropriate individuals.[2] This can be achieved
by having all the collected and streamed data hardware and software encrypted, allowing only
authorized users to decrypt said data. The hardware components mentioned in the Design sec-
tion comes with built-in hardware encryption accelerators and software encryption that can be
realized by first encrypting each data packet before transmitting. Encryption will be enabled
concurrently on the server side. All the wireless communication components also comply with
the FCC requirements.

To protect the rights and welfare of human subjects in research, we ought to abide to the
Institutional Review Board (IRB) which takes oversight of research involving human subjects,
and to comply with the Federal Policy for the Protection of Human Subjects and applicable
federal laws and regulations [3]|, we intend to test our system on toddlers towards the end for
validation purposes with Professor Nancy McElwain from the College of HDFS. The IRB ensures
that appropriate safeguards exist to protect the rights and welfare of research subjects. [4] IRB
review process will be led by the reserach coordinators, therefore, we will have all the required
approval to carry out testing with proper consent and in accordance to IRB protocol.

3.3 Self-assessment

Based on the above discussions, I feel that I am a little behind schedule. Most of my time is spent
on debugging code due to the complexity of verifying low-level hardware code. Once the WiFi
program code is done, I will have more time to work on circuit schematics PCB layout. Also,

to increase productivity, I will be dedicating more hours a week so that our team can deliver a
working final prototype by the end of the course to the sponsoring researchers.

I am dedicating on average 28 hours a week on this project to keep up with the proposed schedule
of weekly tasks. I believe that the workload is very evenly spread out amongst each individual
contributor. The blame is on me that I am slightly behind schedule and I will have to make
up for it in the coming weeks as testing of the full system prototype in real-world environment
will have to be done before the final demo. I do want this project to be a success and for it to
continue past the scope of this course.

10

References

[1] IEEE Code of Ethics [Online|. Available:
http://www.ieee.org/about/corporate/governance/p7-8.html

[2] ACM Code of Ethics [Online]. Available:

https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct

[3] Urbana-Champaign Policy Governing the Use of Human Subjects in Research [Online|. Avail-
able:
http://cam.illinois.edu/xi/xi-1.htm

[4] Review Processes and Checklists [Online|. Available:
https://oprs.research.illinois.edu/review-processes-checklists

[5] Espressif Systems (October 2017). ESP32 Datasheet v1.9. Available:
http://espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

[6] GATT Specifications [Online|. Available:
https://www.bluetooth.com/specifications/gatt/

[7] Flash ADC: Chapter 13 - Digital-Analog Conversion |[Online|. Available:
https://www.allaboutcircuits.com/textbook/digital/chpt-13/flash-adc/

11

