
ECE445 - SENIOR DESIGN

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Twilight - Individual Progress Report

Author:
Naren Sivagnanadasan

Date: November 6, 2017

CONTENTS CONTENTS

Contents

1 Introduction 3
1.1 Project Overview . 3

1.1.1 Design Components . 3
1.2 Individual Responsibilities and Role . 4

2 Individual Design Work 5
2.1 Changes Since Review . 5
2.2 Progress . 5
2.3 Testing/Verification . 7

2.3.1 Simulation . 7
2.3.2 Device Prototyping . 8
2.3.3 Modular Testing . 8
2.3.4 Contingencies . 9

3 Conclusion 10
3.1 Self-Assessment . 10
3.2 Plan for Remaining Work . 10

3.2.1 Goals . 11

4 Appendix 14

2

1 INTRODUCTION

1 Introduction

1.1 Project Overview

Twilight is a project looking to develop a self-organizing and reconfigurable lighting
system. Current intelligent lighting systems have various drawbacks that prevent them
from being significantly more useful that standard lighting systems due to the rigidity
of the systems due to centralized control, the less than intuitive user experience and the
cost of the systems.
The environment people live and work in has a deep impact on many things including
mood, psychological health and productivity [2]. Simple changes like having the correct
color temperature at different times of the day or or having the environment handle
simple background tasks to reduce cognitive load may help people live happier and
healthier lives [3]. So it is worth putting in the resources to develop a system that can
optimize environments for people without adding extra things to manage.
The project seeks to accomplish a few main goals. Installation and maintenance of
Twilight should be trivial to the point where a student can put a fixture up with no help.
Twilight will detect and localize all nodes in the system and automatically reconfigure
if connection to one is lost. Twilight blocks will run off standard AC wall power and
will daisy chain power to one another to reduce cabling.Twilight also looks to be an
accessible platform for people to learn about distributed systems.

1.1.1 Design Components

1.1.1.1 Physical Design

Each block is a magnetically suspended wooden box with the same dimensions as a
standard ceiling tile, a square with external width 24.5 and internal width 23. The
internal sides are covered with with aluminum tape, improving the internal light re-
flection. A strip of 140 LEDs are wrapped along the these inside edges. The bottom
face of the frame is covered by a plastic diffuser mounted to the inside of the frame. A
Raspberry Pi Zero with the custom daughter board is mounted to the inside of the block
and controls the blocks on-board communications, LEDs and power systems. Two barrel
jacks to provide and distribute power are inlaid into the two adjacent sides. Lastly, an
RJ45 jack is also inlaid into the frame for serial communication between block

1.1.1.2 Power Supply

Each Twilight block uses an integrated switching power supply that provides 4A at 5v.
Using a switching power supply allows for a much smaller package than a traditional
transformer based power supply. This allows the power supply to achieve its weight and
size requirements. However, a switching power supply is more complex than a standard
transformer based one and would push the amount of work for this project out of the

3

1.2 Individual Responsibilities and Role 1 INTRODUCTION

scope of this class. We therefore opted into using an integrated component, the Mean
Well IRM-20-5.

1.1.1.3 Control Board

The control board manages power distribution to all the components in the node, the
control of the LED strip and it hosts the networking hardware

1.1.1.4 Networking

The networking component has 3 parts, the connection to other nodes, the PIC which
handles the routing of messages and the connection to the Raspberry Pi.

1.1.1.5 Software

When the system is powered on for the first time, it will go through a localization
protocol where each block will begin to create a map of the system. Blocks will assign
itself and propagate the location assignment to its neighbors signing the message with
its EEPROM ID and the number of times the message has been propagated. The block
will take assignment from the message with the lowest hops. Once the topology of
system is established, the system will enter the default functionality initialized on each
block.
User control of the system is done through border routers (blocks that are both con-
nected to the system and some sort of external interface e.g. the local network or even
a light switch). This will be the gateway to control the systems high level functionality.
It may be the case that a user would want to take down the system and move it, or add
a new block or remove a broken block. The self organizing property of Twilight makes
it robust to these possibilities. If a block is removed, the system will continue onwards
since there is no dependency between blocks in the system.

1.2 Individual Responsibilities and Role

The break up of work is I am handling the networking hardware, protocol development
and software. Rauhul is working the full system integration, developing the Pi Hat we
are using to host the LED and Networking components and the PSU carrier board. We
both share the responsibility of the physical hardware design, though the majority of
that work is already complete.

4

2 INDIVIDUAL DESIGN WORK

2 Individual Design Work

2.1 Changes Since Review

Since the review, we have finalized our hardware design. We are going to continue
using our wood frame design. We decided on our light diffuser as a plastic film we are
stretching across the frame and have a tentative physical layout of the internals of the
system.

We decided that instead of the original idea of a full 12 node system being completed
by the end of the semester, we are going to focus on a 4 node system to demonstrate
the technology. The idea is that we should still be able to demonstrate the key tenants
of the project (Self-Organizing, Reconfigurable, and Accessible) with these 4 nodes and
scaling up simply requires manufacturing more nodes.

We also decided on using I2C as the interconnect between the PIC and the controller.
We added a level converter to the design since the PIC’s operating voltage is 5v and the
Pi operates at 3.3V.

We moved the LED driver circuit into a more simple driver, relying more on software
to handle timings instead of doing it in hardware. Our original design was complex
enough that we felt that even if we spent the full semester designing it, the driver as
planned may or may not be completed due to how precise and complex the single wire
protocol the LED strips we are using use. In fact we felt if we were to implement our
original plan that the simplest way to deploy the design would be to put an FPGA on
our control board, which we felt was a bit too out of scope considering the other work
to be done and the fact we are a two person team.

2.2 Progress

We have finished the final four physical boxes for the system demo as seen in Figure
1. Slight modifications to those boxes will be needed once the boards for the PSU and
control arrive to allow for internal wiring. We also finalized the first version of the
control board. The schematic is shown in Figure 2 and the PCB is shown in Figures 3
and 4. Finally, we have started work on the software stack for the project including a
simulator for Twilight nodes and initial firmware, networking and application code. We
also built a device prototype to start testing software.

5

2.2 Progress 2 INDIVIDUAL DESIGN WORK

Figure 1: Physical Design of the System

Figure 2: Control Board Schematic

6

2 INDIVIDUAL DESIGN WORK 2.3 Testing/Verification

Figure 3: Top layer of the PCB

Figure 4: Bottom layer of the PCB

2.3 Testing/Verification

We have two main testing paths, a simulator and a device prototype. The simulator
helps test applications at scale (with more nodes than we can afford to prototype). The
device prototype allows us to test code that we would actually deploy on devices. The
device prototype is only useful until we have functional hardware (which should be
next week). However, the simulator could tern into a tool that would remain useful
even after the project ends as developers can use it to test code.

2.3.1 Simulation

Because the real control board will not be here for another week, I have begun devel-
oping a Twilight Node Simulator so that I can start to write the device control system
code without access to the hardware right away. The simulator instead of working over
serial connections, works over sockets. There are 4 pairs of sockets connecting to other

7

2.3 Testing/Verification 2 INDIVIDUAL DESIGN WORK

simulator processes and a another pair connecting to the prototype device code. An
example of some of the code used in the simulator is in Appendix A.

Figure 5: System Prototype

2.3.2 Device Prototyping

We use an Arduino Mega 2560 as a stand in for the control board. The Mega runtime
is similar to the runtime we will be using and it has the same 4 serial ports that we will
use in the final control board. We also use the ATmega 2560 as our PIC and LED Driver
so the Arduino Mega is a convenient prototyping platform. Figure 5 shows the system
prototype I built to help prototype the firmware, networking and application code. It
shows the Pi connected to the controller board (Arduino) via I2C and a level converter.
The two simulated nodes are connected via a serial connection.

2.3.3 Modular Testing

2.3.3.1 Power Supply

We cannot test the power supply until the module arrives, though we have done exten-
sive testing on the power draw of the system (though this has not changed since the
design document)

2.3.3.2 LED Driver

We have tested a prototype LED drive through the device prototype above. We can
successfully select a color on the device and have the color display it on the strip.

8

2 INDIVIDUAL DESIGN WORK 2.3 Testing/Verification

2.3.3.3 Networking

As mentioned above we are able to send messages between two devices via a serial
connection.

2.3.3.4 Software

We still have not tested the protocol layer as its not written yet, but in order to verify
it is function it must pass the following test: The system must be able to power on and
being executing the default program. In doing so the system will establish localization
and display a pattern.

2.3.3.5 PCB

The PCBs have not yet arrived though to verify the board we will use the test software
we developed for the device prototype. The PCB should function exactly the same as
the prototype so the same test program for the device prototype should work for the
PCBs.

2.3.4 Contingencies

2.3.4.1 Power Supply

If the PSU does not supply enough current our contingency is to reduce the load by
artificially limiting the brightness and concentration of the LED strips. If it is too heavy,
we may resort to mounting the PSU separately to the rest of the node.

2.3.4.2 LED Driver

For the LED driver, if for some reason we are unable to control the LEDs with the PCB
and its not because of a bug in the software, it is most likely due to a bug in the PCB
design, if time permits we may look to get another board revision done. If not we will
look to use some of the extra debugging pins we broke out on the PCB to try and recover
the board.

2.3.4.3 Networking

If we cannot use the PCB to network between nodes for reason, we could look at using
the integrated networking stack on the Pi to do the networking and localization.

2.3.4.4 Software

If we cannot get localization working in software, then we can hard code it, though it
means that we have not fulfilled one of the key objectives of the project. If we cannot

9

3 CONCLUSION

get the an abstract application layer working then we can hard code an application for
the demonstration.

2.3.4.5 PCB

In the outcome that we cannot get the PCB working in enough time and the PCB is
completely nonfunctional, we may resort to using a Teensy as our control board.

2.3.4.6 Results

We are currently able to send a message between the two Pis via the serial connection.
We can also control color of the LED strip with the Raspberry Pi via the control board.
Now we need to develop more generic code and a runtime so that a developer can
create apps without having to worry about the networking.

3 Conclusion

3.1 Self-Assessment

We are currently a week behind our proposed schedule as we are still waiting for our
boards to arrive which were sent out last week. Our software is on schedule though the
choice to make a simulator means some extra unplanned work. We have shown that the
network layer of our system works though our system prototype and now development
of the application layer is underway.
As to load, Rauhul has been doing more of the work that is under time constraints
since we need the board fast enough to address any mistakes and as most of my work
is software development and prototyping which only comes to the forefront once the
boards arrive. So, Rauhul for the last couple weeks has been working on the PCB after
my initial design. I have been building the prototypes detailed above and been writing
iterations of the networking, firmware and the application code.

3.2 Plan for Remaining Work

For the remainder of the semester, I am going to finish the rest of the software and we
need to populate the boards and create the final iterations of the lights. We then need
to prepare the demonstration for the final presentation.

10

3 CONCLUSION 3.2 Plan for Remaining Work

Week Tasks

11/7/17
Populate Board
Address potential PCB bugs + send out new revision

11/14/17
Populate revised PCB
Finish PIC Firmware and Networking Software

11/21/17 Finish Application code

11/28/17
Install array
Create front-end + demo app

12/4/17 Demo

Table 1: Semester schedule

3.2.1 Goals

3.2.1.1 Ambitious

• Demonstrate a partition tolerant system

• Demonstrate node synchronization - e.g. can change colors synchronously

• Expand past 4 nodes in the system

3.2.1.2 Realistic

• System self organizes - Is plugged in and beings execution of a distributed program
automatically

• User can select another app and the program is propagated

• Apps are self contained and simple

11

REFERENCES REFERENCES

References

[1] C. Rowland, ”Whats different about user experience design for the
Internet of Things?”, O’Reilly Media, 2017. [Online]. Available:
https://www.oreilly.com/learning/whats-different-about-user-experience-design-
for-the-internet-of-things. [Accessed: 03- Oct- 2017] pages

[2] W. van Bommel and G. van den Beld, ”Lighting for work: a review of visual and
biological effects”, Lighting Research & Technology, vol. 36, no. 4, pp. 255-266,
2004. pages 3

[3] I. Knez, ”Effects of indoor lighting on mood and cognition”, Journal of Environ-
mental Psychology, vol. 15, no. 1, pp. 39-51, 1995. pages 3

[4] N. Farrow, N. Sivagnanadasan and N. Correll, ”Gesture based distributed user in-
teraction system for a reconfigurable self-organizing smart wall”, Proceedings of
the 8th International Conference on Tangible, Embedded and Embodied Interac-
tion - TEI ’14, 2013. pages

[5] H. Ishii, H. Kanagawa, Y. Shimamura, K. Uchiyama, K. Miyagi, F. Obayashi and
H. Shimoda, ”Intellectual productivity under task ambient lighting”, Lighting Re-
search and Technology, 2016. pages

[6] R. Kller, S. Ballal, T. Laike, B. Mikellides and G. Tonello, ”The impact of light
and colour on psychological mood: a cross-cultural study of indoor work environ-
ments”, Ergonomics, vol. 49, no. 14, pp. 1496-1507, 2006. pages

[7] J. Kim, J. Ko and M. Cho, ”A Study of Integrated Evaluation of System Lighting and
User Centered Guideline Development - Focused on the Lighting Design Method
for Office Space -”, Korean Institute of Interior Design Journal, vol. 23, no. 6, pp.
78-86, 2014. pages

[8] D. Park, Y. Lee, M. Yun, S. Song, I. Rhiu, S. Kwon and Y. An, ”User centered gesture
development for smart lighting”, HCI Korea 2016, 2016. pages

[9] F. Tan, ”User-in-the-loop smart lighting control system”, Masters, Delft University
of Technology, 2016. pages

[10] D. Burmeister, A. Schrader and B. Altakrouri, ”Reflective Interaction Capabilities
by Use of Ambient Manuals for an Ambient Light-Control”, HCI International 2016
Posters’ Extended Abstracts, pp. 409-415, 2016. pages

[11] A. Lucero, J. Mason, A. Wiethoff, B. Meerbeek, H. Pihlajaniemi and D. Aliakseyeu,
”Rethinking our interactions with light”, interactions, vol. 23, no. 6, pp. 54-59,
2016. pages

12

REFERENCES REFERENCES

[12] National Electrical Code. Quincy, MA: National Fire Protection Association, 2007.
pages

[13] ”Serial Baud Rates, Bit Timing and Error Tolerance”, 2017. [Online]. Available:
http://www.picaxe.com/docs/baudratetolerance.pdf. [Accessed: 20- Oct- 2017].
pages

13

4 APPENDIX

4 Appendix

Listing 1: PIC Simulator Source Code

import zmq
import mul t ip roce s s ing as mp

URL = ” tcp : / / 1 2 7 . 0 . 0 . 1 : ”

c lass PICSim () :
def i n i t (s e l f ,

device ,
north rx ,
south rx ,
ea s t r x ,
west rx ,
nor th tx ,
south tx ,
e a s t t x ,
wes t tx) :

s e l f .CONNECTIONS[”DEVICE”] = device
s e l f .CONNECTIONS[”NORTH RX”] = nor th rx
s e l f .CONNECTIONS[”SOUTH RX”] = south rx
s e l f .CONNECTIONS[”EAST RX”] = e a s t r x
s e l f .CONNECTIONS[”WEST RX”] = west rx

s e l f .CONNECTIONS[”NORTH TX”] = nor th tx
s e l f .CONNECTIONS[”SOUTH TX”] = sou th tx
s e l f .CONNECTIONS[”EAST TX”] = e a s t t x
s e l f .CONNECTIONS[”WEST TX”] = wes t tx

s e l f . contex t = zmq . Context ()

s e l f . s t a r t s e r v e r ()
s e l f . b ind tx ()

s e l f . inbox = []
s e l f . outbox = []

def s t a r t u p (s e l f) :
s e l f . connec t rx ()

14

4 APPENDIX

s e l f . TX proc = mp. Process (t a r g e t=s e l f . TX)
s e l f . RX proc = mp. Process (t a r g e t=s e l f . RX)
s e l f . send proc = mp. Process (t a r g e t=s e l f . send)
s e l f . r e c e i v e p r o c = mp. Process (t a r g e t=s e l f . r e c e i v e)

s e l f . TX proc . s t a r t ()
s e l f . RX proc . s t a r t ()
s e l f . send proc . s t a r t ()
s e l f . r e c e i v e p r o c . s t a r t ()

s e l f . TX proc . j o i n ()
s e l f . RX proc . j o i n ()
s e l f . send proc . j o i n ()
s e l f . r e c e i v e p r o c . j o i n ()

def s t a r t s e r v e r (s e l f) :

’ ’ ’ FIGURE THIS OUT ’ ’ ’

s e l f . dev ice = s e l f . contex t . socke t (zmq . REP)
s e l f . dev ice . bind (URL + s e l f .CONNECTIONS[”DEVICE”])
return

def b ind tx (s e l f) :
s e l f . no r th tx = s e l f . contex t

. socke t (zmq .PUSH)
s e l f . no r th tx . bind (URL +

s e l f .CONNECTIONS[”NORTH TX”])

s e l f . sou th tx = s e l f . contex t
. socke t (zmq .PUSH)

s e l f . sou th tx . bind (URL +
s e l f .CONNECTIONS[”SOUTH TX”])

s e l f . e a s t t x = s e l f . contex t
. socke t (zmq .PUSH)

s e l f . e a s t t x . bind (URL +
s e l f .CONNECTIONS[”EAST TX”])

s e l f . wes t tx = s e l f . contex t

15

4 APPENDIX

. socke t (zmq .PUSH)
s e l f . wes t tx . bind (URL +

s e l f .CONNECTIONS[”WEST TX”])

return

def connec t rx (s e l f) :
s e l f . nor th rx = s e l f . contex t

. socke t (zmq . PULL)
s e l f . nor th rx . connect (URL +

s e l f .CONNECTIONS[”NORTH RX”])

s e l f . sou th rx = s e l f . contex t
. socke t (zmq . PULL)

s e l f . sou th rx . connect (URL +
s e l f .CONNECTIONS[”SOUTH RX”])

s e l f . e a s t r x = s e l f . contex t
. socke t (zmq . PULL)

s e l f . e a s t r x . connect (URL +
s e l f .CONNECTIONS[”EAST RX”])

s e l f . wes t rx = s e l f . contex t
. socke t (zmq . PULL)

s e l f . wes t rx . connect (URL +
s e l f .CONNECTIONS[”WEST RX”])

def send msg (s e l f , dest , msg) :
’ ’ ’ T e s t RX/TX par t ’ ’ ’
s e l f . outbox . append ({ dest , msg})
return

def rec ieve msgs (s e l f) :
’ ’ ’ T e s t RX/TX par t ’ ’ ’

msgs = s e l f . inbox
s e l f . inbox = []
return msgs

def send (s e l f) :

’ ’ ’ FIGURE THIS OUT ’ ’ ’

16

4 APPENDIX

while t rue :

def r e c e i v e (s e l f) :

’ ’ ’ FIGURE THIS OUT ’ ’ ’

def RX(s e l f) :
while t rue :

msg = s e l f . nor th rx . recv ()
i f msg != None :

s e l f . inbox . append (msg)
msg = s e l f . sou th rx . recv ()
i f msg != None :

s e l f . inbox . append (msg)
msg = s e l f . e a s t r x . recv ()
i f msg != None :

s e l f . inbox . append (msg)
msg = s e l f . wes t rx . recv ()
i f msg != None :

s e l f . inbox . append (msg)

def TX(s e l f) :
while t rue :

i f len (s e l f . outbox) != 0:
msg = s e l f . outbox . pop
i f msg . des t == ”NORTH” :

s e l f . no r th tx
. send (msg . content)

e l i f msg . des t == ”SOUTH” :
s e l f . sou th tx

. send (msg . content)
e l i f msg . des t == ”EAST” :

s e l f . e a s t t x
. send (msg . content)

e l i f msg . des t == ”WEST” :
s e l f . wes t tx

. send (msg . content)
else :

e x i t (1)

The remainder of the code can be found here: https://github.com/acm-uiuc/twilight

17

	1 Introduction
	1.1 Project Overview
	1.1.1 Design Components

	1.2 Individual Responsibilities and Role

	2 Individual Design Work
	2.1 Changes Since Review
	2.2 Progress
	2.3 Testing/Verification
	2.3.1 Simulation
	2.3.2 Device Prototyping
	2.3.3 Modular Testing
	2.3.4 Contingencies

	3 Conclusion
	3.1 Self-Assessment
	3.2 Plan for Remaining Work
	3.2.1 Goals

	4 Appendix

