Automated Scoring System for Ticket to Ride

Team 43 -- Matthew McCracken and Andrew Douglas
ECE 445 Design Document -- Fall 2017
TA: Kexin Hui



1 Introduction
1.1 Objective

Ticket to Ride is a fun game to play with friends, but when it comes to counting your
score, it can put a strain on your relationship. The scoring process includes tallying your scores
obtained from laying down train cars on certain paths and trusting that your friends did it
correctly. It also includes the longest path bonus, which can take a while to count and determine
whose path is longer. Destination cards can be confusing to determine. Besides keeping track of
the score, it is also tedious to place the individual train cars on the board to claim a route. This
can take up a lot of time and slows the game down unnecessarily.

Our solution to this problem is to automate the scoring process of this game. Automation
will greatly increase enjoyment, alleviating the most cumbersome and time consuming part of
the whole experience. The automation will include indicating the current player’s turn, showing
current scores, and automatically calculating end-game scores including bonuses from
destination cards and longest path. Instead of manually placing train cars on the board, LEDs
will automatically be illuminated when a player captures a route. The color of the LEDs will
indicate which player controls the route.

1.2 Background

From personal experience, tallying score is the worst part of Ticket to Ride. This
sentiment is shared by Jacob Bryan (current TA for this course), who first suggested we
implement the solution to this problem. There is feasible demand for a product like this, as there
are automated versions of popular board games out there already, such as electronic Monopoly
and The Game of Life. There was also a project in 2013 that automated the scoring process of
Settlers of Catan that performed well - showing that there was a demand for automated scoring
processes for board games like Ticket to Ride.

1.3 High-Level Requirements

e Train spaces should light up when the corresponding path is claimed.

e The game must be able to automatically calculate and display the players’ score
during the game, as well as automatically factor in longest path bonus and
destination cards at the end of the game.

e The game should automatically end when a player’s number of train cars dips to
2 or below.



2 Design
2.1 Block Diagram

T T T T T T T T T T T T T |
| Power Module !
|
User . || Voltage | | 9V i
Input/Buttons ! Regulator Batteries | |
e N —— [
/"-’-"'f I“

r—————%==""— P 7! —————————— I '
I 36, " Main PCB \ i
| - : |
' |
I |
: 2 '
'| Control System  -# MCU :
| |
' |
' |
| T !

__________________ —_ A8 T

E— Legend
= DigitalData
= Power Line

Figure 1: Block Diagram

The user input, control, and LED modules will take care of lighting the LEDs when a path
is taken. The MCU will have dedicated memory to be able to store player scores as well as
calculate scores in real time. The MCU will also keep track of number of train cars for each
player, allowing for an automatic end to the game when the number of train cars goes below 2
for any player. The MCU accomplishes this by receiving a 12 bit digital data line from the control
module that indicate what action each player took on their turn. These signals are then decoded
by the MCU and used to update the game state. The LCD module is connected to the MCU and
is used to give feedback to players about their current point totals. This screen will indicate
when the game has ended and also show all of the players’ point totals so that the winner is
determined immediately.



2.2 Physical Design

] City Bution

Number of
. Players

Deastination
@ Card Button
- A Mext Tum

E - 3 O Busiton

31in.
Figure 2: The Physical Board

Above is an image of the Ticket to Ride board game. Buttons will be placed at each of
the different cities (the orange dots on the board) and will be used to indicate that a player is
taking control of a rail line between two cities. The buttons will also allow a player to enter in the
two endpoints listed on a destination card drawn. In addition to the buttons on the cities, there
will be a few more buttons located in the lower left corner of the board allowing the users to
indicate the number of players, pass the turn along to the next player, and indicate that they are
entering a destination card rather than claiming a rail. Instead of placing the plastic trains to
claim a route, LEDs will light up along each route to indicate that it has been claimed. The color
of the LEDs on the path will be different depending on which player took control of the route. An
LCD screen will be placed in the lower right corner of the board (where the scoring details are
now located) and will display the current point total for each player and indicate which player is
currently taking their turn. There will be a one inch deep wooden housing constructed that the
game board will rest in - all of the wiring and electrical components can be placed in the housing
to achieve a polished look in the finished product.

2.3 Block Design
2.3.1 User Interface Module

2.3.1a Functional Overview

The user interface module will output a 36 bit digital data signal to the control system
module based on the specific buttons pressed by the user. Two city buttons will be pressed by a
player when they want to claim a route. These two cities will correspond to two bits in the 36 bit
data signal that will be set high. In addition to claiming routes, the buttons can be used to enter
destination cards. This can be done by first pressing the “Destination Card Button” and then
pressing the two relevant city buttons at the same time. There are also a few special buttons




necessary to play the game, namely, buttons to indicate the number of players and a button that
can be used to end a player’s turn. The signals from each of the buttons are sent directly to the
MCU for processing.

2.3.1b Requirements and Verifications

Requirements Verifications
e Provide debounced signals to the e Use an oscilloscope to observe
control module representing the user behavior right after the button is
input. pressed to see if the output is
bouncing.
e Signals should be provided at 5V with e Use a multimeter to determine input
a tolerance of £ 0.5V. and output voltage of the module.

Table 1: Requirements and verifications for user interface module.

2.3.2 Control System Module

2.3.2a Functional Overview

The control module will take a 36 bit digital data signal input from the user interface
module, as well as output a power line to the LED module and a 12 bit digital data signal to the
MCU module. The control module will include logic to set control signals necessary for
gameplay, as well as handle any button presses that occur in the user interface, such as
number of players, end turn, and destination card input mode. When a set of buttons are
pressed, the control module will determine if the move is valid. This can be done by maintaining
one bit flip flops for each of the rail lines that indicate whether or not they have been claimed. If
the move is not valid, the module sends a ‘not valid’ digital signal (12 bits of 1) to the MCU. If the
move is valid, the control module will encode the path that was claimed, send the command to
the MCU block (digital line, 12 bits), then turn on the LEDs associated with the path.

The encoded signal that will be sent to the MCU will be generated by a compression
function. This is necessary because it would be impractical to send all 36 bits to the MCU, but a
unique representation of each pair of cities is still necessary. In the 36 bit input vector, only two
positions will have 1s at a time. These 1s correspond to the two cities between which a player
would like to claim a route. Given this limitation, the compression function can simply output the
number of zeros before the least significant 1 followed by the number of zeros between the least
significant 1 and the most significant 1. Since the input is 36 bits long, the largest number of
sequential zeros that could occur is 34. Six bits are needed to represent the number 34 and thus
the output of the compression must be 12 bits in order to correctly handle all possible inputs. An
example of the inputs and outputs to this function is shown in table 3, and the process that
encodes the data is shown in figure 3.



2.3.2b Requirements and Verifications

Requirements

Verifications

Compress 36-bit data from the
User-Input module into 12-bit data to
be sent to the MCU.

Input 5V so we can provide 5V to the
correct LEDs (based on user input)
with a tolerance of £ 0.5V in less than
0.25s.

Provide 25mA + 5mA to the correct
LEDs (based on user input) in less
than 0.25s.

Use oscilloscope to compare
input-output voltages from logic gates
and ensure the correct compression is
output. See table 3.

Use multimeter to determine input
and output voltage. Timing will be
verified using a stopwatch to
determine the delay between buttons
pressed and LEDs turning on.

Use multimeter to determine input
and output current. Timing will be
verified using a stopwatch to
determine the delay between buttons
pressed and LEDs turning on.

Table 2: Requirements and verifications for control system module

2.3.2c Supporting Material

Input (36 bits) Output (12 bits)
0...011 000000 000000
0...101 000000 000001
110...0 100010 000000

Table 3: Compression function 1/O




Shift reg loaded w/
36 bit city info

Compression
register=
111111111111
Increment counter
: Load compression
Right shift 1 register with counter
value Left shift
compression register
6

Clear Counter

Final compression in : : —
compression register Right shift city
register 1

Figure 3: Flowchart of compression algorithm.



FAHC1GGED

CLE
2T

T

JOLEH

Tun]
e

il

u
m
-

H

=

Fm i Bma@ oz

=

N.“...|

SHIFT_1

FAHC1GGED

CLE

=L
Tuna]
CLe]

ZER

B --||m ﬁ?m

14

12

11

jln]

paf | e

ETmOmna@

SHIFT_2

TAHCIGED

CLE
=T

LR

CLe=]

ZER

=11

FmimEOmna@

SHIFT_S

L1 _BUTTORS

TAHCIGG0

CLE
SHID

Jun ]

CLe=]

ZER

FPmiEmna@

L
&
|
2|

ysB 3 |

FAHC1GGED

o fofe

S0

ITTP= T

CLeC]

u
m
-

FPmOma@ T

=

P [ |

SHIFT_S

Figure 4: Circuit schematic of the first half of compression algorithm. Input comes from

CITY_BUTTONS and output to next half is LSB.



SB

LK.
Iy rn(Jj o+
— — —
! v v
= = =
g & o o =
+ :J
)
O @@ o m oo [
[ oo oo O
LB §| :|cn‘u:||m|v—c = I ]
LK

LR C)—;
10

7
Ele
5

P!

3
5
1
5
10

7

3

5

4

3
=
1
o
10

7

3

g

4

3
o

[ kDI M l“““~| ] OOI
[T ] [T
" e ocuoaoax— L Er %I{I_E SR g [ o 51{1_5 Oo@m- e
— [ ] L HlowoD L b EnR L] L
L — 1) f [ f
¥ iy & = " v ¥ " w
I~ B - i B R T [~ B O m
(S e e [a s el oo o oY
| ||| i | o= L ] ] KA ]
— ||| — ||| — ||

EMNCODED_SIG

Figure 5: Circuit schematic of the second half of compression algorithm. The input from the first
half is LSB and the output is ENCODED_SIG.

2.3.3 LED Module

2.3.3a Functional Overview

The LED module will be used to indicate the paths that each player has claimed. LEDs
placed on the routes will also light up to indicate which player has claimed that route. Each
player will have a different color, making it easy to see which routes they have just by looking for

8



a specific color light. LEDs will also be used to give the users feedback about the choice they
are currently making. For example, some cities are connected by a dual set of train lines. If a
player is trying to claim one of these two lines (and neither has yet been claimed) the LEDs for
one line will blink, indicating that the player needs to select between the two lines. The number
of players buttons could then be used to select between the two lines. A message on the LCD
screen would be used to indicate which button press corresponds to which route. In total, 308
LEDs will have to be used to implement this design, as there are 308 possible positions to place
a train car.

Each LED should require around 25mA of current, with a tolerance of £ 5mA. This can
be achieved using current-limiting resistors as to not burn them out. Each set of LEDs will have
a 5V £ 0.5V input from the control system module.

Each individual path can be represented by a number of LEDs ranging from 1 to 6. The
LEDs cannot be wired in series, as their operating voltage (approximately 2.2V) is too high to
have 6 LEDs wired in series with a 5V supply. We will wire each series of LEDs in parallel with a
different valued resistor for each configuration as to keep the LED current the same across the
board. Configurations with more LEDs will require a smaller valued resistor to allow the correct
current to be split across the multiple LEDs, a la KCL.

The color will be controlled via the MCU depending on the player number. There are five
color options: red, green, blue, yellow, and white. The MCU will switch colors every turn
depending on whose turn it is and always output a 3 bit digital color signal to the LEDs. The
LEDs will store the color by using a flip flop for every color on each LED line. The flip flop will be
enabled when both of the corresponding cities to that line of LEDs are high, allowing the current
color from the MCU to be stored for that cycle and keep that color even when the player number
changes.

2.3.3b Requirements and Verifications

Requirements Verifications

e Receive 5V with a tolerance of £ 0.5V e Use a multimeter to determine input
and limit current to 20mA using voltages and currents for each line of
resistors. LEDs.

e Display the paths taken in the correct e Every combination of button inputs will
colors, number of players, and the be tested to ensure that all LEDs light
current turn. up accordingly, as well as display the

correct number of players and current
turn.

Table 4: Requirements and verifications for LED module



2.3.3c Supporting Material

+5y +5Y +5Y
112 ? BE
ko & E i
0= i) e oy
FA i FA iTEA dnf =
T
GHD (ﬁ [n]
+5Y +5Y +5
2‘8&% ? 23‘&‘ ? 1867
o
PO I [P = cf |wd of of |ef 2 |=f = |z gE |zE
0= = 0= = jm} O O m] | ey ey fpy - = =
Y00 (Was (Mo ¥ A R RGP P PA SR R iR PA i R
- o o To

Figure 6: Sample LED lines of length 1 through 6 and how they should be wired.

RO MG
Lty 1 Bit__1 IC2A +
e REDGFREEM BLUE
pty2 Bit__=2
408 1M
:’3§| ] i t| E
E =
sz 2 83 8 5[
- =0
ola +
g “ =+ [ m ™ -
= BEAESBAEESD
AR aE
o &
=
¢ i

D

Figure 7: An LED line consisting single multi-colored LED, represented by 3 different colored
LEDs. There will be a total of 78 lines with varying numbers of LEDs wired in parallel as in
Figure 6.

10



2.3.4 MCU Module

2.3.4a Functional Overview

The MCU module will receive commands from the control module - in the form of a 12-bit
digital data input - for what move was made by the current player, as well as number of players
and current mode. The MCU block will keep track of cumulative user score and output a data
signal to the LCD display. The MCU will also determine what color each path will be if claimed
during a given turn. This is done by This module will also be responsible for calculating and
assigning the longest route bonus as well as handling the destination cards that each player had
entered in. The control system module will tell the MCU module what specific move was taken
and the MCU will then have to update the game state to handle this action. The MCU wiill
communicate with the LCD unit to display information to the players. If an error was received
from the control unit, this will be decoded and displayed on the LCD in a human readable error
message. Updates on the scores and current player turn can also be sent to the LCD for
display.

2.3.4b Requirements and Verifications

Requirements Verifications
e Decode 12-bit digital signals from the e Every combination of cities will be
control module to calculate current tested to ensure that all scorekeeping
scores. is correct. See table 3.
e Successfully calculate score, including e We will display values associated with
bonuses from destination cards and the completion of routes and the
longest path. longest path in real time so we can

verify our results from the MCU.

e Output game-state information to the e Every possible input will be executed

LCD screen. as to verify the correct output from the
MCU. This is a highly visual
requirement so the verification will
also be visual.

e Output the correct color assignments e A multimeter will be used to measure

during a given turn the color signals and ensure that the
correct color is being output at all
times. This is a requirement that can
be verified visually as well as
quantitatively.

e Receive 5V and 145mA from the e A multimeter will be used to measure
power module voltage regulators to input voltage and current to ensure
operate within the recommended the MCU is operating at the
range consistently. recommended levels.

Table 5: Requirements and verifications for MCU module.

11



2.3.5 LCD Module

2.3.5a Functional Overview

The LCD display will receive current score, turn, and status information from the MCU in
the form of 6 bit digital data signals and output to show the real-time score calculations. The
status information refers to whether or not a player is entering a destination card. The LCD
display will make it easy for users to confirm that destination cards are being entered correctly.
All pieces of information will be formatted in such a way that they will be human readable on the
LCD screen. Power for the screen will be provided directly from the power module. These
messages will display any errors to the users, such as an invalid city connection, and also make
it easy to check everyone’s current score.

2.3.5b Requirements and Verifications

Requirements Verifications
e Receive input from MCU to display e Use an oscilloscope to determine
current scores, turn, and number of input data voltages. Correct usage of
cars left. the LCD can also be observed on the

screen itself.

e Input5V =1V and 15mA + 5mA from e Use a multimeter to determine input
the power module. voltage and current from power

module to ensure operation within

recommended bounds.

Table 6: Requirements and verifications for LCD module

2.3.6 Power Module

2.3.6a Functional Overview

The power module will consist of two 9V batteries in parallel and be used to send a
power line to the whole board. Voltage regulators and current-regulating resistors will be used to
stabilize power. Diodes will be used to prevent any damage to the electronics if the batteries are
inserted backwards. It is important to keep power consumption to a minimum to maintain battery
life, so we will use two 9V batteries in parallel. The need to plug into a wall outlet severely
detracts from the experience of playing a board game so we will pay careful attention to
maximize battery life.

12



2.3.6b Requirements and Verifications

Requirements

Verifications

Output 5V with a tolerance of £ 0.5V
from 9V alkaline batteries and voltage
regulators to all modules but LED
module.

Output 145mA + 10mA to the MCU.

Output 10mA + 5mA to the LCD
screen.

Use a multimeter to measure output
voltage from voltage regulator to
ensure that 9V is successfully being
scaled to 5V.

Use a multimeter to measure output
current from power and input current
to MCU.

Use a multimeter to measure output
current from power and input current
to LCD.

Table 7: Requirements and verifications for power module

2.4 Tolerance Analysis

The control block is the block that poses the most risk to the completion of this project.

The control unit needs to control LEDs, encode path data, and send it to the MCU for score
calculation. It is the hardest module to implement solely because of the complexity of the
hardware involved. There are a large number of routes that all have to produce a unique code
that can be sent to the MCU. This unit will also be responsible for checking whether or not a
move is valid. It will have to keep track of which routes are claimed and implement logic to
check that the move a player has entered does not interfere with an existing route. Both of these
components will require a significant amount of hardware design that can be time consuming
and difficult to troubleshoot.

As the majority of our control system will be TTL logic, there is a high tolerance for error.

Current is not much of a factor in TTL chips. Input voltage has a tolerance of about 1.5V, which
is large compared to our 5V input signal. This nearly eliminates the need for noise reduction in

our design. That being said, we will still try our best to hold to the voltage levels specified in this
document and the datasheets for each component to ensure that nothing goes awry in our
implementation.

13




3 Cost and Schedule

3.1 Cost Analysis

We can calculate the cost of labor using the formula suggested in the design document

overview: number of partners x ($/hour) x 2.5 x hours to complete. Assuming a pay rate of 40

dollars an hour and approximately 10 hours of work each week (per person) we can estimate a
rough labor cost of (2x40x2.5x100) or $20,000.

Part Price / part Quantity Price Running total
8 bit parallel-in $0.39 5 $1.95 $1.95
serial-out shift

register

4 bit parallel-in $2.49 3 $7.47 $9.42
parallel-out shift

register

10 bit counter $0.51 1 $0.51 $9.93
Tactile Push $0.07 42 $2.94 $12.87
Button Switch

16x2 LCD $9.95 1 $9.95 $22.82
Display

32 Bit MCU $5.30 1 $5.30 $28.12
MKV30F64VLH10

Chanzon 5mm $0.09 308 $27.72 $55.84
RGB LED

Adding our labor cost to the cost of parts gives us a total cost estimate of $20,055.84.

Table 8: Pricing information.

14



3.2 Schedule

Week Matt Drew
10/9/17 Test control module implementation Test LED module implementation
10/16/17 | Begin first PCB design Program MCU and check interaction

with with control module and LCD

10/23/17 | Order all necessary components Test that power module will
(chips, LEDs, MCU, LCD)

10/30/17 | Prototype all modules on breadboard Prototype all modules on breadboard

with PCB with PCB
11/6/17 Finalize second PCB design Begin building physical design
prototype

11/13/17 | Assemble all components into physical | Verify functionality of all components
prototype and fix any bugs

11/20/17 Resolve any issues with functionality of | Resolve any issues with functionality of
overall design overall design

11/27/17 Refine design based on comments in Refine design based on comments in

mock demo mock demo
12/4/17 Prepare demo and mock presentation Prepare demo and mock presentation
12/11/17 Prepare presentation and final paper Prepare presentation and final paper

Table 9: Schedule of next steps.

4 Ethics and Safety

We will uphold the IEEE code of ethics!" during the development of our project. Any
intellectual property concerns about building upon an existing board game will be avoided as we
do not intend to sell the final product, however we will do our due diligence as to not plagiarize
other works while designing our project. Our project has very minimal safety concerns, and
could even improve upon the safety of the original board game. We will be eliminating the need
for small game pieces and thus will be able to remove a choking hazard for small children. All of
our electronics will be safely housed underneath the board in an insulated environment. We will
take care that there are no exposed electrical components that could harm users. We will also
put in a fail-safe to protect our circuit should the batteries be put in the wrong way, so there will
be no chance of fire or frying our circuit.

15



References
[1] “IEEE Code of Ethics.” IEEE, www.ieee.org/about/corporate/governance/p7-8.html.

16



