Home

Rockwell Collins

We would like to thank Rockwell Collins for their generous support of our course.

Are you interested in learning more about sponsoring Senior Design? Click here!

This course helps electrical engineering seniors make the transition into industry through self-chosen team projects. To do so, the course emulates the day-to-day life of a real engineering design environment creating what numerous students have called their favorite class. Students put together what they have learned, develop teamwork and leadership skills, and gain in-depth practical knowledge in a topic that excites them. Moreover, Senior Design Projects make a good addition to a resume. Many employers consider a good Senior Design Project to be just as valuable as internship experience.

Ingenuity Article: Both teams had high praise for the ECE 445 experience. "I felt that the class was a type of final exam for my education," said Willenborg. "It proves that I can do engineering. It's a hands-on test to see what you've learned here." Sengupta had a similar view: "The greatest thing about 445 is that it's all you. At the same time, the worst thing about 445 is that it's all you. This class relies on your ability to have self-discipline, motivation, and endurance."

We would also like to thank Northrop Grumman for their generous sponsorship of our course. Please visit the Sponsors link to learn more about all of the great companies that help make this course possible


How to Receive Credit for Senior Design

Non-ECE 445 Students

Please click here to sign up for lab access or a special circuit.

Cloud-controlled quadcopter

Anuraag Vankayala, Amrutha Vasili

Cloud-controlled quadcopter

Featured Project

Idea:

To build a GPS-assisted, cloud-controlled quadcopter, for consumer-friendly aerial photography.

Design/Build:

We will be building a quad from the frame up. The four motors will each have electronic speed controllers,to balance and handle control inputs received from an 8-bit microcontroller(AP),required for its flight. The firmware will be tweaked slightly to allow flight modes that our project specifically requires. A companion computer such as the Erle Brain will be connected to the AP and to the cloud(EC2). We will build a codebase for the flight controller to navigate the quad. This would involve sending messages as per the MAVLink spec for sUAS between the companion computer and the AP to poll sensor data , voltage information , etc. The companion computer will also talk to the cloud via a UDP port to receive requests and process them via our code. Users make requests for media capture via a phone app that talks to the cloud via an internet connection.

Why is it worth doing:

There is currently no consumer-friendly solution that provides or lets anyone capture aerial photographs of them/their family/a nearby event via a simple tap on a phone. In fact, present day off-the-shelf alternatives offer relatively expensive solutions that require owning and carrying bulky equipment such as the quads/remotes. Our idea allows for safe and responsible use of drones as our proposed solution is autonomous, has several safety features, is context aware(terrain information , no fly zones , NOTAMs , etc.) and integrates with the federal airspace seamlessly.

End Product:

Quads that are ready for the connected world and are capable to fly autonomously, from the user standpoint, and can perform maneuvers safely with a very simplistic UI for the common user. Specifically, quads which are deployed on user's demand, without the hassle of ownership.

Similar products and comparison:

Current solutions include RTF (ready to fly) quads such as the DJI Phantom and the Kickstarter project, Lily,that are heavily user-dependent or user-centric.The Phantom requires you to carry a bulky remote with multiple antennas. Moreover,the flight radius could be reduced by interference from nearby conditions.Lily requires the user to carry a tracking device on them. You can not have Lily shoot a subject that is not you. Lily can have a maximum altitude of 15 m above you and that is below the tree line,prone to crashes.

Our solution differs in several ways.Our solution intends to be location and/or event-centric. We propose that the users need not own quads and user can capture a moment with a phone.As long as any of the users are in the service area and the weather conditions are permissible, safety and knowledge of controlling the quad are all abstracted. The only question left to the user is what should be in the picture at a given time.

Project Videos