Course Overview

COVID-19 Instructions for ECE 445 Senior Design

We require everyone who uses the 445 lab in ECEB to adhere to the following lab policies regarding COVID-19.

  • You must wear a mask at all times while in the lab.
  • You must clean and disinfect your workstation when you are finished with it.
  • Welcome!

    Welcome to ECE 445! If you've looked at the course Calendar, you've probably already noticed that this class is quite different from most other classes in the department. The class only meets as a whole for the first few weeks of the semester. During these lectures you will meet the Course Staff, learn about specific assignments, requirements, and resources for the course, and have a chance to meet other students to share ideas and form teams. These are some of the most important weeks for the class since the decisions you make during this time will determine what you'll get out of this class and, in many ways, how much you'll enjoy it.

    Outside of lecture, you are expected to be working on your own to develop ideas and form teams. You are also expected to actively participate on the web board to exchange ideas, receive feedback from course staff, and eventually get your project idea approved. Once your team has a project approved, you will be assigned a TA, with whom you will have weekly meetings. Think of your TA as a project manager. Keep in mind that they are not there to do the work for you. Rather, they are there to keep you on track, point you towards resources (both within and outside of the department), and evaluate the result of your efforts.

    Expectations and Requirements

    We have high expectations for students participating in ECE 445. You are soon to be alumni of one of the top ECE departments of the world. Our alumni hold themselves to high technical and professional standards of conduct. In general, projects are expected to be safe, ethical, and have a level of design complexity commensurate with the rigor of the ECE Illinois curriculum. Requirements for specific assignments due throughout the semester can be found by looking through the Grading Scheme for the course. Please read through this documentation well before each assignment is due. Specific due dates can be found on the course Calendar.

    Below are a few words of wisdom to keep in mind throughout the semester to increase your enjoyment and success in the course:

    Modularized Electronic Locker

    Jack Davis, Joshua Nolan, Jake Pu

    Modularized Electronic Locker

    Featured Project

    Group Member: Jianhao (Jake) Pu [jpu3], Joshua Nolan [jtnolan2], John (Jack) Davis [johnhd4]

    Problem:

    Students living off campus without a packaging station are affected by stolen packages all the time. As a result of privacy concerns and inconsistent deployment, public cameras in Champaign and around the world cannot always be relied upon. Therefore, it can be very difficult for victims to gather evidence for a police report. Most of the time, the value of stolen items is small and they are usually compensated by the sellers (Amazon and Apple are very understanding). However, not all deliveries are insured and many people are suffering from stolen food deliveries during the COVID-19 crisis. We need a low-cost solution that can protect deliveries from all vendors.

    Solution Overview:

    Our solution is similar to Amazon Hub Apartment Locker and Luxer One. Like these services, our product will securely enclose the package until the owners claim the contents inside. The owner of the contents can claim it using a phone number or a unique user identification code generated and managed by a cloud service.

    The first difference we want to make from these competitors is cost. According to an article, the cost of a single locker is from $6000 - $20000. We want to minimize such costs so that we can replace the traditional mailbox. We talked to a Chinese manufacturer and got a hardware quote of $3000. We can squeeze this cost if we just design our own control module on ESP32 microcontrollers.

    The second difference we want to make is modularity. We will have a sensor module, a control module, a power module and any number of storage units for hardware. We want to make standardized storage units that can be stacked into any configuration, and these storage units can be connected to a control module through a communication bus. The control module houses the hardware to open or close all of the individual lockers. A household can purchase a single locker and a control module just for one family while apartment buildings can stack them into the lockers we see at Amazon Hub. I think the hardware connection will be a challenge but it will be very effective at lowering the cost once we can massively manufacture these unit lockers.

    Solution Components:

    Storage Unit

    Basic units that provide a locker feature. Each storage unit will have a cheap microcontroller to work as a slave on the communication bus and control its electronic lock (12V 36W). It has four connectors on top, bottom, left, and right sides for stackable configuration.

    Control Unit

    Should have the same dimension as one of the storage units so that it could be stacked with them. Houses ESP32 microcontroller to run control logics on all storage units and uses the built-in WiFi to upload data to a cloud server. If sensor units are detected, it should activate more security features accordingly.

    Power Unit

    Power from the wall or from a backup battery power supply and the associated controls to deliver power to the system. Able to sustain high current in a short time (36W for each electronic lock). It should also have protection against overvoltage and overcurrent.

    Sensor Modules

    Sensors such as cameras, motion sensors, and gyroscopes will parlay any scandalous activities to the control unit and will be able to capture a photo to report to authorities. Sensors will also have modularity for increased security capabilities.

    Cloud Support

    Runs a database that keeps user identification information and the security images. Pushes notification to end-users.

    Criterion for Success:

    Deliverers (Fedex, Amazon, Uber Eats, etc.) are able to open the locker using a touchscreen and a use- provided code to place their package inside. Once the package is inside of the locker, a message will be sent to the locker owner that their delivery has arrived. Locker owners are able to open the locker using a touchscreen interface. Owners are also able to change the passcode at any time for security reasons. The locker must be difficult to break into and offer theft protection after multiple incorrect password attempts.

    Project Videos