
ECE437: Sensors and Instrumentation 

Lab 1: Introduction to Opal Kelly FPGA and Digital I/O Lab 

Introduction 
Welcome to ECE437! This class focuses on developing communication interfaces with variety of 
sensors, such as temperature, pressure, capacitive, image sensors and others using Verilog and 
Python programming languages. As you develop the necessary firmware using Verilog and 
software in Python to acquire data from various sensors, you will also gain important 
understanding how these sensors operate. By the end of the course, you will gain knowledge how 
to develop large scale projects that will enable you to simultaneously and in real-time communicate 
with collection of different sensors. The data acquired from these sensors will be transferred to the 
PC using USB 3.0 interface and displayed in real-time on the computer screen. Although we don’t 
focus on any particular sensory application in this class, the sensor platform that is available for 
you in this class can be used for other courses, such as senior design and others. You are strongly 
encouraged to leverage the resources available to you in this class and used them to solve real life 
problems outside this class. 

We have developed a custom printed circuit board (PCB) which houses several different sensors: 
temperature, capacitive, humidity, imaging sensor and others. The board also has several different 
LEDs and push buttons that will be used to output and input data. This custom PCB interfaces with 
an FPGA board designed by OpalKelly Inc. OpalKelly provides versatile data acquisition cards 
based on Xilinx FPGA chips and today they are one of the leading companies in this space. The 
company was started few years ago by two undergraduate students in the Electrical Engineering 
department at the University of Illinois at Urbana-Champaign, while they were working on their 
senior design project. Having struggled with designing an interface between sensors and computers 
for their senior design project, they created a versatile digital input/output board that can be used 
for various projects and applications. Today, their cards are used in many industrial applications, 
such as automotive and airline industry, as well as for low-budget prototyping. 

The OpalKelly board that we will be using in this class is XEM7310-A75. Additional information 
about this board can be located on the OpalKelly’s website, located here. It is important to 
understand the different resources you will be using in this class which will enable you to 
communicate and acquire data from various sensors. The FPGA that is housed on the OpalKelly 
XEM7310-A75 board is physically connected to the input/output pins of the various sensors 
housed on our custom PCB. The FPGA also has capabilities to communicate to the PC via USB 
3.0 interface using OpalKelly’s proprietary firmware and software. This USB interface capabilities 
enable fast and easy communication between the sensors and PC using the FPGA as the command 
central. 

You will be developing firmware code for the FPGA in Verilog using Xilinx’s Vivado software – 
the leading development platform for hardware description language such as Verilog and VHDL. 
To receive data on the PC from the FPGA, you will be developing Python code. Note, OpalKelly 
also provides support for Matlab, C, C# and other programming languages. OpalKelly’s website 

https://docs.opalkelly.com/xem7310/


provide numerous firmware and software examples, tutorial and other advices. They provide 
discussion forums where you can find answers to commonly encountered problems. You are 
strongly encouraged to explore OpalKelly’s website and get familiar with their support. Here is a 
link where you can locate some of the tutorials and examples: link. 

In this class, we will be developing primarily finite state machines (FSM) in Verilog hardware 
description language. Throughout the semester and especially in the next two labs, you will learn 
about the basic Verilog syntax that will enable you to write successful FSMs. In this first lab, you 
will learn about declaring input/output variables and communicating with the outside world using 
buttons and LED display. You will write a simple FSM that will enable you to control the clock 
speed of your FSM. There are lot of resources on the web that can help you master Verilog code. 
Here is one place where you will find many useful examples: link. 

Relevant Documents for this Lab 

Required reading material for this lab: 

1. Information for the XEM7310-A75 board can be located here. 
2. OpalKelly Verilog and Python tutorial can be located here. 
3. Verilog example code on the course website: intro.v and xem7310_v1.xdc. 

Additional reference material: 

1. Verilog tutorials and example can be located here. 
2. The sensor board layout and schematic are available on the course website. 

The goals of this lab are: 
1. Guide you to the process of setting up a project in Xilinx. 
2. Write an introductory FPGA programs from Xilinx Vivado. 
3. Successfully synthesize the code and program the FPGA using OpalKelly FrontPanel. 

LEDs and Buttons 
We'll begin with the Xilinx Vivado. Start Vivado from the Desktop or the Start Menu. You'll see 
the following screen: 

 

Select Create Project to start the wizard. Give your project a simple name such as Lab1. Make 
sure to choose an easily accessible location to save your project, as we will need to get access to 

https://docs.opalkelly.com/fpsdk/getting-started/
http://www.asic-world.com/examples/verilog/
https://docs.opalkelly.com/XEM7310/XEM7310
https://docs.opalkelly.com/fpsdk/samples-and-tools/
http://www.asic-world.com/examples/verilog/


some of the files in the project directory. Also assure that the “Create project subdirectory” box is 
checked. This will create your project as a folder, which is necessary to be able to store the project 
files you will be creating later. 

Select RTL Project as your project type and check the “Do not specify sources at this time” box. 
On the Default Part screen, use the Family and Package filters with “Artix-7” and “fgg484” 
respectively. Choose xc7a75tfgg484-1, click Next, and then click Finish. 

Warning: Make sure you select the aforementioned FPGA device (family and package). If you 
make the wrong selection, you will get strange errors later in your design and it will not be obvious 
why your design is not synthesizing. Please double check that you have selected the correct settings 
on this window. This oversight has been the number one issue preventing students from completing 
this and future labs in timely manner. 

 

  



XEM 7310 Default Part window 

Now that we have a project initialized, let's go into the detail of the various panes in Vivado. The 
left pane, highlighted in orange, is the Flow Navigator. From here, you can create diagrams, add 
sources to your program, run simulations, implementations, and create bitstreams. The box 
highlighted in blue near the top left is the Sources Window that allows you to view and manage 
your sources and constraints. Below that is a box highlighted with a yellow rectangle. This pane 
will allow you to see some of the properties of your simulation, if you wish to do so. On the right 
is the red-highlighted “IP Catalog” pane, which contains many wizards provided by Xilinx, along 
with many of the functions supported on the board. Lastly, the bottom pane, highlighted in green, 
is the Console. All the debugging warnings and errors show up here, as well as interaction with 
the simulator. 

 

Default Project Manager Window Panes 

Get started by adding a new source file from the Flow Navigator using the “Add Sources” button. 
Choose Add or create design sources in the Add Sources dialogue box. In the next window, click 
Create File and choose Verilog as the file type, and give it a simple file-name like “Intro” Make 
sure the file location says “<Local to Project>”. Once the file is added, click Finish. On the next 
screen, we'll add our input and output variables, which you can copy from the example below. 



 

In this example, button is a 4-bit input signal; led is an 8-bit output signal; sys_clkn and sys_clkp 
are single bit input signals. These four signals are the input and output signals from the module 
that we will create shortly. They are also input/output signals from the FPGA to the outside world 
in this example. You will shorty create a constrains file which will define how these signals are 
mapped to physical pins on the FPGA. 

After pressing OK, we're finally ready to write some Verilog. Locate the new source file in the 
Sources panel and double clicking on the filename “Intro.v”. There will be few lines of code 
already inserted for you by Vivado in this file. This will be the input/output variables that this 
module will use to communicate with the rest of project. In our example, these four variables will 
communicate between the FPGA and the outside world, such as LEDs, buttons and clock signals. 

Our first example code will be a counter. We will define an 8-bit counter whose contents will be 
displayed on the LEDs. We will use two different buttons to determine if the counter will increment 
or decrement. When either one of these buttons is pressed, the counter will count up or down, 
respectively. Note that the buttons and LEDS are active low by default. This was a design decision 
when we created this custom board. When the buttons are pressed, they are in state 0. Otherwise, 
the buttons are in state 1. Similarly, the LEDs turn on when a low signal (i.e. state 0) is presented 
and they are off when a high signal is applied. 

Finite state machines require a clock signals which controls the current state of your code and 
computes the next state. The counter is a simple example of FSM and requires a clock signal which 
will dictate when the counter will change its current state. The two clock signals, sys_clkn and 
sys_clkp, are low voltage differential clock signals, also known as LVDS signals. These two 
signals cannot be directly used to control the various finite state machines that you will develop. 
Instead, we will generate a main clock signal from these two LVDS clock signals using the 
IBUFGDS module. This new clock signal, which we will define as clk in our code, operates at 
200MHz. 

Since the new clock signal (i.e. clk) operates at 200MHz, it will be impossible for us to observe 
the counter changes on the LEDs when we press various buttons. These high frequency signals 



can only be observed on the oscilloscope, which will be explored in a later lab. To be able to 
observe the various states of the counter on the LEDs, we will step down the main clock by writing 
your first FSM code. Once we generate a slow clock, we will write a second FSM that will control 
the counter state depending on which buttons is pressed. The second FSM will run from the slow 
clock and will control the counter current and next state depending on which button is pressed. 

The counter code is shown next and can be downloaded from the course website. Can you 
concisely explain what this module does? If you are confused, the answer is below. 

 



Here is a description of the code above. First, you should note how we have initialized the various 
registers (i.e. variables) in the code. All registers must be first declared using reg data type with 
the correct bit length. For example, slow_clk is a single bit register because clock signals require 
a single bit. Counter is an 8-bit register which is mapped directly to the LEDs. 

Second, you should observe the various ways we have initialized the registers in the code. You 
can initialize registers using binary, hexadecimal or digital numbers. For example, counter is an 8-
bit register. It is initialized to value 0 using hexadecimal notation 8h’00. The 8h means this is an 
8-bit number initialized to hexadecimal value 0. When we increment the counter, we use binary 
notation 1’b1. Register clk_div is compared to decimal number 10,000,000 because we like to slow 
down the main clock 10 million times. Most of the time you will use digital values to initialize or 
compare the values of your registers. However, sometimes using binary or hex notation will make 
your problem easier to understand. 

In the first FSM, we like to slow down the main clock, which runs at 200MHz, and create a slow 
clock that runs at 20 Hz. This is done by using an intermediate register (or variable) named clkdiv. 
The register clkdiv is first initialized to value 0. This is a very important step and always remember 
to initialize your registers in your code. Otherwise, you will not know what state they are 
initialized, and you might observe erroneous results or even your code might not run at all. In this 
example, at every rising edge of the high-speed clock signal, we will increment clkdiv and check 
if it exceeds 10,000,000. If it does, we will toggle the state of the slow_clk register. Hence, we 
toggle the slow_clk every 10 million cycles from the fast clock. 

The second FSM controls the counter state. Note that the code that is in the always block runs out 
of the slow_clk. In fact, every time the slow_clk goes from state 0 to state 1, that code will be 
evaluated. In this code, we will decrement the counter register if button 0 is pressed. Otherwise, 
the counter is incremented. 

Note that we have used the assign statement to map the counter register to the external LEDs via 
the variable led. The variable led is a wire (not a register) and this is why we use assign statement. 
If led was a register it will have to be in the always statement because register need clock signals 
to be updated. Since the external LEDs are active low, we have mapped the complement of the 
counter to the LEDs. 

When you save a Verilog file in Vivado (Ctrl+S, File  Save, or click the save icon), it 
automatically parses and checks for correct Verilog syntax. The next step is to synthesize your 
code which is equivalent to compiling code in many programming language, such as C or C++. 
Since the synthesize process is slightly long, you are highly encouraged to save frequently to avoid 
wasting time on simple errors. 

The next step is to add a constrain file in your design. The constrain file maps the input/output 
variables in your top module (i.e. Intro.v in this example) to physical pins on the FPGA. For 
example, the 4 buttons that are on the custom board are physically connected to 4 pins on the 
FPGA. The constrains file keeps track of all these physical connections to the proposer variable 
names. Since we have designed this board, we have created the necessary constrains file and you 
can download it on the course website. 

Next, you will need to add the constrains file in your project. Go to the Flow Navigator pane again 
and add a new source, but this time choose Add or create constraints.  Add the constrains file 



that you downloaded from the course website by selection Add Files in the Add or create 
constrains window. The name of the constrain file is xem7310_v1.xdc. 

The Sources Pane should now show the added constraints file. Open the constrain file by double 
click on the file name. Scroll through the file and locate the “led” variable. The led[0] variable is 
connected to pin A13 on the FPGA. This pin from the FPGA is directly connected to an LED on 
the OpalKelly board. You will refer to this constrains file later in the class when you will need to 
find which pins from the FPGA are connected to the various pins from the sensors. 

Now that we have our top-level module and our pin-mapping, we are ready to synthesize and 
program the FPGA (or flash) with our first design. In the Flow Navigator, press Run Synthesis to 
start the build process. The Console will print a series of messages describing the synthesis. Once 
the synthesis is complete, you will be prompted to begin implementation. Go ahead and begin 
implementation as well. Once that is finished, you will have the option to Generate Bitstream. 
Select this option and click OK in the dialogue box. This command should go quite quickly and 
will generate a *.bit file used by the FPGA to run the program. If there are any error messages, 
they will be displayed in this window and you will need to correct them so that you can generate 
a bit file. Also pay attention to the warning message. Sometimes the reason for problems in your 
design are in the warning messages. 

Custom Sensor Board Overview 
Before you can flash your FPGA with the newly compiled bit file, you should get familiar with 
the sensor’s board. The test board is composed of two PCB boards: the FPGA board designed by 
OpalKelly and our custom sensors board which houses various sensors. The image bellow outlines 
all the components on both boards. There are four switch buttons on the bottom left corner of the 
custom board. There are also eight LEDs on the OpalKelly board which are relevant for this 
exercise. Take the time to get familiar with all components. 

A schematic representation of our custom board can be located on the course website. In the 
schematic view, you can trace how the various sensors and other external components are 
connected to the FPGA. 

Do not touch any of the component on the board with your hands because there is a high chance 
you will damage the board. As you walk around, you accumulate lot of electrical charges. When 
you touch the PCB, you will most likely discharge these charges on the electrical components and 
cause damage. 

Next, you will need to power up your board and connected to the PC. Only use the power adapters 
that are provided with the PCB board. Connect the power cable to the “5V power” port and connect 
the board to the PC via the “USB 3.0” port. Note, that your computer has USB 2.0 and USB 3.0 
ports. Although for these first few labs it will not make much difference which port on the 
computer you have connected the board, this will be an issue later in the class when we start using 
high speed data transfers. It is a good practice to start connecting the board to the correct USB port 
on the PC. 



 

Now that you have created a bit file of your design, you are ready to program (or flash) the 
FPGA. Open the FrontPanel program from either the Desktop or Start Menu (under Opal Kelly -
> FrontPanel). If you cannot locate the program in the start menu, open up Windows Explorer 
and go to: C:\Program Files\Opal Kelly\FrontPanelUSB\FrontPanel.exe. You'll be greeted with 
the following program: 

 

Click the middle-left button (IC with down arrow) and go to your corresponding project directory. 
Select the <FileName>.bit file, where <FileName> is your top-level filename. The FPGA should 
automatically flash and start running your program. Test it out by pressing button[0] on the board 
and see how the counter increments or decrements. 

 



Checkpoint 1 – (100 points) 
The test code that you just compiled and tested it on the system ensures that your board is working, 
and you have written a correct HDL code. You will use this sample as a starting point for the code 
that you will need to develop. 
You will need to write Verilog code that will do the following task: 
• Count from 0 to 100 in steps of 10 and display the results on the LEDs. Stop counting once 
the counter reaches 100. (50 points). 
• Count from 0 to 100 in steps of 10. Once the counter reaches 100, it will count back 0 in 
steps of 10. The counting up and down will be repeated indefinitely (50 pts). 

Once you complete your code, please demonstrate it to the TA.  

Post lab Questions (5 points each question): 
1. How many total digital input/output pins does the XEM 7310-A75 board have? 
2. What is the maximum clocking speed of the XEM 7310-A75 board? 
3. How does the XEM 6002 board compare to XEM 7310-A75 in terms of logic gate 

count, transfer speeds between the board and PC, external memory, and clocking 
speed of digital logic? 

4. Why is the clkdiv register 24-bit long? 
5. If clkdiv is declared as an 8-bit register, what is the minimum frequency you can 

achieve for the slow_clk signal using these FSMs? 
6. Look at the Project Summary window. In the Utilization section, you will find out the 

number of look up tables (LUT), flip flops (FF), input/output pins (IO) and buffers 
(BUFG) are used for your design. How many resources on the FPGA are used to 
implement your code? 

7. Include a printout of your Verilog code with your report. 
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