
Distributed Systems

CS425/ECE428

Feb 15 2023

Instructor : Radhika Mittal

Acknowledgements for some of the materials: Indy Gupta and Nikita Borisov

Today’s agenda

•Wrap up Multicast
• Chapter 15.4
• Tree-based multicast and Gossip

•Mutual Exclusion
• Chapter 15.2

Recap: Ordered Multicast

• FIFO ordering: If a correct process issues multicast(g,m) and
then multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’) then any
correct process that delivers m’ will have already delivered m.
• Note that à counts multicast messages delivered to the application,

rather than all network messages.

• Total ordering: If a correct process delivers message m before
m’, then any other correct process that delivers m’ will have
already delivered m.

ISIS algorithm: failures

• What happens if sender fails while multicasting a message?

• What happens if sender fails while multicasting the final
priority of a message?

• What happens if a process fails before sending the proposed
priority for a message?

• What happens if a process fails after sending the proposed
priority for a message?

Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’),

then every correct process that delivers m’ will have already
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that

delivers m’ will have already delivered m.
• Note that à counts multicast messages delivered to the application,

rather than all network messages.
• Total ordering
• If a correct process delivers message m before m’ then any other

correct process that delivers m’ will have already delivered m.

Implementing causal order multicast

• Similar to FIFO Multicast
• What you send with a message differs.
• Updating rules differ.

• Each receiver maintains a vector of per-sender sequence
numbers (integers)
• Processes P1 through PN.
• Pi maintains a vector of sequence numbers Pi[1…N] (initially all

zeroes).
• Pi[j] is the latest sequence number Pi has received from Pj.

Implementing causal order multicast
• CO-multicast(g,m) at Pj:

set Pj[j] = Pj[j] + 1
piggyback entire vector Pj[1…N] with m.
B-multicast(g,{m, Pj[1…N]})

• On B-deliver({m, V[1..N]}) at Pi from Pj: If Pi receives a multicast from
Pj with sequence vector V[1…N], buffer it until both:

1.This message is the next one Pi is expecting from Pj, i.e.,
V[j] = Pi[j] + 1

2.All multicasts, anywhere in the group, which happened-before
m have been received at Pi, i.e.,

For all k ≠	j: V[k] ≤ Pi[k]
When above two conditions satisfied,

CO-deliver(m) and set Pi[j] = V[j]

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]

Causal order multicast execution

Self-deliveries omitted for simplicity.

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

Causal order multicast execution

Self-deliveries omitted for simplicity.

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

Causal order multicast execution

[1,0,0,0]
Deliver!

[1,1,0,0]

Self-deliveries omitted for simplicity.

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Causal order multicast execution

Self-deliveries omitted for simplicity.

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Causal order multicast execution

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Missing 1 from P1
Buffer!

Self-deliveries omitted for simplicity.

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Missing 1 from P1
Buffer!

Deliver P1’s multicast, [1,0,0,0]
Causality condition true for buffered multicasts

Deliver P2’s buffered multicast, [1,1,0,0]
Deliver P4’s buffered multicast, [1,1,0,1]

Causal order multicast execution

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Deliver!
[1,1,0,1]

Causal order multicast implementation

• Only looks at multicast messages delivered to the
application.

• Ignores causality created due to other network messages.

Ordered Multicast

• FIFO ordering
• If a correct process issues multicast(g,m) and then multicast(g,m’),

then every correct process that delivers m’ will have already
delivered m.

• Causal ordering
• If multicast(g,m) à multicast(g,m’) then any correct process that

delivers m’ will have already delivered m.
• Note that à counts multicast messages delivered to the application,

rather than all network messages.
• Total ordering
• If a correct process delivers message m before m’, then any other

correct process that delivers m’ will have already delivered m.

More efficient multicast mechanisms

• Our focus so far has been on the application-level semantics
of multicast.

• What are some of the more efficient underlying mechanisms for a
B-multicast?

B-Multicast

Sender

B-Multicast using unicast sends

TCP/UDP packets

Sender

B-Multicast using unicast sends

Closer look at physical network paths.
Sender

B-Multicast using unicast sends

Redundant packets!
Sender

B-Multicast using unicast sends
Similar redundancy when individual nodes
also act as routers (e.g. wireless sensor
networks).

How do we reduce the overhead?

Sender

Tree-based multicast

TCP/UDP packets

Instead of sending a unicast to all nodes,
construct a minimum spanning tree and
unicast along that.

Sender

Tree-based multicast

TCP/UDP packets

A process does not directly send messages to all
other processes in the group.

It sends a message to only a subset of processes.
Sender

Tree-based multicast
A process does not directly send messages to all
other processes in the group.

It sends a message to only a subset of processes.

Closer look at the physical network.

Sender

Tree-based multicast

Also possible to construct a tree that
includes network routers. IP multicast!

Sender

Tree-based multicast

What happens if a node fails?
Overhead of tree construction and repair.

Sender

TCP/UDP packets

Third approach: Gossip

Transmit to b random targets.

Third approach: Gossip

Other nodes do the same when they
receive a message.

Transmit to b random targets.

Third approach: Gossip

Other nodes do the same when they
receive a message.

Transmit to b random targets.

Third approach: Gossip
No “tree-construction” overhead.
More efficient than unicasting to all receivers.
Also known as “epidemic multicast”.
Probabilistic in nature – no hard guarantees.
Good enough for many applications.

Third approach: Gossip
Used in many real-world systems:
• Facebook’s distributed datastore uses it to

determine group membership and failures.
• Bitcoin uses it to exchange transaction

information between nodes.

Multicast Summary
• Multicast is an important communication mode in distributed systems.

• Applications may have different requirements:
• Basic
• Reliable
• Ordered: FIFO, Causal, Total
• Combinations of the above.

• Underlying mechanisms to spread the information:
• Unicast to all receivers.
• Tree-based multicast, and gossip: sender unicasts messages to only

a subset of other processes, and they spread the message further.
• Gossip is more scalable and more robust to process failures.

Today’s agenda

•Wrap up Multicast
• Chapter 15.4
• Tree-based multicast and Gossip

•Mutual Exclusion
• Chapter 15.2

• Goal: reason about ways in which different processes in a
distributed system can safely manipulate shared resources.

Why Mutual Exclusion?
• Bank’s Servers in the Cloud: Two of your customers make

simultaneous deposits of $10,000 into your bank account, each
from a separate ATM.
• Both ATMs read initial amount of $1000 concurrently from

the bank’s cloud server
• Both ATMs add $10,000 to this amount (locally at the ATM)
• Both write the final amount to the server
• What’s wrong?

Why Mutual Exclusion?
• Bank’s Servers in the Cloud: Two of your customers make

simultaneous deposits of $10,000 into your bank account, each
from a separate ATM.
• Both ATMs read initial amount of $1000 concurrently from

the bank’s cloud server
• Both ATMs add $10,000 to this amount (locally at the ATM)
• Both write the final amount to the server
• You lost $10,000!

• The ATMs need mutually exclusive access to your account entry
at the server
• or, mutually exclusive access to executing the code that

modifies the account entry.

More uses of mutual exclusion

• Distributed file systems
• Locking of files and directories

• Accessing objects in a safe and consistent way
• Ensure at most one server has access to object at any point

of time
• In industry
• Chubby is Google’s locking service

Problem Statement for mutual exclusion

• Critical Section Problem:
• Piece of code (at all processes) for which we

need to ensure there is at most one process
executing it at any point of time.

• Each process can call three functions
• enter() to enter the critical section (CS)
• AccessResource() to run the critical section code
• exit() to exit the critical section

ATM1:

enter();
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

exit();

ATM2:

enter();
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

exit();

Our bank example

Mutual exclusion for a single OS

• If all processes are running in one OS on a machine
(or VM):
• Semaphores
•Mutexes
• Condition variables
•Monitors
•…

Processes Sharing an OS: Semaphores

• Semaphore == an integer that can only be accessed via two special
functions

• Semaphore S=1; // Max number of allowed accessors.

wait(S) (or P(S) or down(S)):
while(1) { // each execution of the while loop is atomic
if (S > 0) {

S--;
break;

}
}

signal(S) (or V(S) or up(s)):
S++; // atomic

enter()

exit()

Atomic operations are
supported via hardware
instructions such as
compare-and-swap,
test-and-set, etc.

ATM1:

enter();
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

exit();

ATM2:

enter();
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

exit();

Our bank example

ATM1:

wait(S); //enter
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

signal(S); // exit

ATM2:

wait(S); //enter
// AccessResource()

obtain bank amount;
add in deposit;
update bank amount;
// AccessResource() end

signal(S); // exit

Our bank example
Semaphore S=1; // shared

Mutual exclusion in distributed systems

• Processes communicating by passing messages.

• Cannot share variables like semaphores!

• How do we support mutual exclusion in a distributed
system?

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Mutual Exclusion Requirements

•Need to guarantee 3 properties:
• Safety (essential):
• At most one process executes in CS (Critical

Section) at any time.
• Liveness (essential):
• Every request for a CS is granted eventually.

•Ordering (desirable):
• Requests are granted in the order they were

made.

System Model

• Each pair of processes is connected by reliable
channels (such as TCP).

• Messages sent on a channel are eventually delivered
to recipient, and in FIFO (First In First Out) order.

• Processes do not fail.
• Fault-tolerant variants exist in literature.

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Central Server Algorithm

• Elect a central server (or leader)
• Leader keeps
• A queue of waiting requests from processes who wish to

access the CS
• A special token which allows its holder to access CS

• Actions of any process in group:
• enter()

• Send a request to leader
• Wait for token from leader

• exit()
• Send back token to leader

Central Server Algorithm

• Leader Actions:
• On receiving a request from process Pi

if (leader has token)
Send token to Pi

else

Add Pi to queue

• On receiving a token from process Pi
if (queue is not empty)

Dequeue head of queue (say Pj), send that process the token
else

Retain token

Analysis of Central Algorithm

• Safety – at most one process in CS
• Exactly one token

• Liveness – every request for CS granted eventually
• With N processes in system, queue has at most N

processes
• If each process exits CS eventually and no failures, liveness

guaranteed
• Ordering:
• FIFO ordering guaranteed in order of requests received at

leader
• Not in the order in which requests were sent or the

order in which processes enter CS!

Analysis of Central Algorithm

• Safety – at most one process in CS
• Exactly one token

• Liveness – every request for CS granted eventually
• With N processes in system, queue has at most N

processes
• If each process exits CS eventually and no failures, liveness

guaranteed
• Ordering:
• FIFO ordering guaranteed in order of requests received at

leader
• Not in the order in which requests were sent or the

order in which processes call “enter”!

Analyzing Performance
Three metrics:

• Bandwidth: the total number of messages sent in each enter and
exit operation.

• Client delay: the delay incurred by a process at each enter and
exit operation (when no other process is in CS, or waiting)
• We will focus on the client delay for the enter operation.

• Synchronization delay: the time interval between one process
exiting the critical section and the next process entering it (when
there is only one process waiting). Measures of the throughput of
the system.

Analysis of Central Algorithm
• Bandwidth: the total number of messages sent in each enter and exit

operation.
• 2 messages for enter
• 1 message for exit

• Client delay: the delay incurred by a process at each enter and exit
operation (when no other process is in CS, or waiting)
• 2 message latencies or 1 round-trip (request + grant) on enter.

• Synchronization delay: the time interval between one process
exiting the critical section and the next process entering it (when
there is only one process waiting)
• 2 message latencies (release + grant)

Limitations of Central Algorithm

• The leader is the performance bottleneck and single point of
failure.

Mutual exclusion in distributed systems

•Our focus today: Classical algorithms for mutual
exclusion in distributed systems.
• Central server algorithm
• Ring-based algorithm
• Ricart-Agrawala Algorithm
•Maekawa Algorithm

Ring-based Mutual Exclusion

Currently holds token,
can access CS

Token:

N80

N32

N5

N12

N6

N3

Ring-based Mutual Exclusion

Cannot access CS anymore

Here’s the token!

Token:

N80

N32

N5

N12

N6

N3

Ring-based Mutual Exclusion

Token:

N80

N32

N5

N12

N6

N3

Currently holds token,
can access CS

Ring-based Mutual Exclusion

• N Processes organized in a virtual ring
• Each process can send message to its successor in ring
• Exactly 1 token
• enter()
• Wait until you get token

• exit() // already have token
• Pass on token to ring successor

• If receive token, and not currently in enter(), just pass on
token to ring successor

Analysis of Ring-based algorithm

• Safety
• Exactly one token

• Liveness
• Token eventually loops around ring and reaches requesting

process (no failures)
• Ordering
• Token not always obtained in order of enter events.

Analysis of Ring-based algorithm

• Safety
• Exactly one token

• Liveness
• Token eventually loops around ring and reaches requesting

process (no failures)
• Ordering
• Token not always obtained in order of enter events.

Analysis of Ring-based algorithm

• Bandwidth
• Per enter, 1 message at requesting process but up to N

messages throughout system.
• 1 message sent per exit.
• Constantly consumes bandwidth even when no process requires

entry to the critical section (except when a process is executing
critical section).

Analysis of Ring-based algorithm
• Client delay:
• Best case: just received token
• Worst case: just sent token to neighbor
• 0 to N message transmissions after entering enter()

• Synchronization delay between one process’ exit() from the
CS and the next process’ enter():
• Best case: process in enter() is successor of process in

exit()
• Worst case: process in enter() is predecessor of process in

exit()
• Between 1 and (N-1) message transmissions.

• Can we improve upon this O(n) client and synchronization delays?
• Next class!

