
Distributed Systems

CS425/ECE428

Feb 8 2023

Instructor : Radhika Mittal

Acknowledgements for some of materials: Indy Gupta and Nikita Borisov

Logistics

• MP0 is due today at 11:59pm.

• Please make sure you are on CampusWire
• Reach out to Manoj (gmk6) if you need access.

• Reminder to share your name when you speak up in class.

Today’s agenda

• Multicast
• Chapter 15.4

• Goal: reason about desirable properties for
message delivery among a group of processes.

Communication modes

• Unicast
• Messages are sent from exactly one process to one process.

• Broadcast
• Messages are sent from exactly one process to all processes on

the network.
• Multicast

• Messages broadcast within a group of processes.
• A multicast message is sent from any one process to a group of

processes on the network.

Where is multicast used?

• Distributed storage
• Write to an object are multicast across replica servers.
• Membership information (e.g., heartbeats) is multicast across all

servers in cluster.

• Online scoreboards (ESPN, French Open, FIFA World Cup)
• Multicast to group of clients interested in the scores.

• Stock Exchanges
• Group is the set of broker computers.

• ……

Communication modes
• Unicast

• Messages are sent from exactly one process to one process.
• Best effort: if a message is delivered it would be intact; no reliability

guarantees.
• Reliable: guarantees delivery of messages.
• In order: messages will be delivered in the same order that they are sent.

• Broadcast
• Messages are sent from exactly one process to all processes on

the network.
• Multicast

• Messages broadcast within a group of processes.
• A multicast message is sent from any one process to the group of

processes on the network.
• How do we define (and achieve) reliable or ordered multicast?

What we are designing in this class?

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)

One process p

‘g’ is a multicast group that also includes the process ‘p’.

What we are designing in this class?

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)

One process p

‘g’ is a multicast group that also includes the process ‘p’.

Basic Multicast (B-Multicast)

• Straightforward way to implement B-multicast:
• use a reliable one-to-one send (unicast) operation:

B-multicast(group g, message m):
for each process p in g, send (p,m).

receive(m): B-deliver(m) at p.
• Guarantees: message is eventually delivered to the group if:

• Processes are non-faulty.
• The unicast “send” is reliable.
• Sender does not crash.

• Can we provide reliable delivery even after sender crashes?
• What does this mean?

Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will
eventually deliver m itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes
deliver m too.

Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will
eventually deliver m itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes
deliver m too.

What happens if a process initiates B-multicasts
of a message but fails after unicasting to a

subset of processes in the group?

Agreement is violated! R-multicast not satisfied.

Implementing R-Multicast

Application
(at process p)

MULTICAST PROTOCOL

multicast(g,m)

Incoming
messages

deliver(m)

Implementing R-Multicast

Application
(at process p)

R-multicast(g,m)

Incoming
messages

R-deliver(m)

B-multicast(g,m)

B-deliver(m)

Implementing R-Multicast

On initialization
Received := {};

For process p to R-multicast message m to group g
B-multicast(g,m); (p∈ g is included as destination)

On B-deliver(m) at process q in g = group(m)
if (m ∉ Received):

Received := Received ∪ {m};
if (q ≠ p): B-multicast(g,m);
R-deliver(m)

Reliable Multicast (R-Multicast)

• Integrity: A correct (i.e., non-faulty) process p delivers a message m at
most once.

• Assumption: no process sends exactly the same message twice

• Validity: If a correct process multicasts (sends) message m, then it will
eventually deliver m itself.

• Liveness for the sender.

• Agreement: If a correct process delivers message m, then all the other
correct processes in group(m) will eventually deliver m.

• All or nothing.

• Validity and agreement together ensure overall liveness: if some
correct process multicasts a message m, then, all correct processes
deliver m too.

Ordered Multicast

• Three popular flavors implemented by several multicast
protocols:

1. FIFO ordering
2. Causal ordering
3. Total ordering

1. FIFO Order

• Multicasts from each sender are delivered in the order
they are sent, at all receivers.

• Don’t care about multicasts from different senders.

• More formally
• If a correct process issues multicast(g,m) and then

multicast(g,m’), then every correct process that delivers
m’ will have already delivered m.

FIFO Order: Example

M1:1 and M1:2 should be delivered in that order at each receiver.
Order of delivery of M3:1 and M1:2 could be different at different receivers.

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

2. Causal Order

• Multicasts whose send events are causally related, must
be delivered in the same causality-obeying order at all
receivers.

• More formally
• If multicast(g,m) à multicast(g,m’) then any correct

process that delivers m’ will have already delivered m.
• à is Lamport’s happens-before
• à is induced only by multicast messages in group g,

and when they are delivered to the application, rather
than all network messages.

Where is causal ordering useful?

• Group = set of your friends on a social network.

• A friend sees your message m, and she posts a response
(comment) m’ to it.

• If friends receive m’ before m, it wouldn’t make sense
• But if two friends post messages m” and n” concurrently,

then they can be seen in any order at receivers.

• A variety of systems implement causal ordering:
• social networks, bulletin boards, comments on websites,

etc.

HB Relationship for Causal Ordering

• HB rules in causal ordered multicast:
• If ∃ pi , e →i e’ then e → e’.

• If ∃ pi , multicast(g,m) →i multicast(g,m’), then multicast(g,m) → multicast(g,m’)
• If ∃ pi , delivery(m) →i multicast(g,m’), then delivery(m) → multicast(g,m’)
• …

• For any message m, send(m) → receive(m)

HB Relationship for Causal Ordering

• HB rules in causal ordered multicast:
• If ∃ pi , e →i e’ then e → e’.

• If ∃ pi , multicast(g,m) →i multicast(g,m’), then multicast(g,m) → multicast(g,m’)
• If ∃ pi , delivery(m) →i multicast(g,m’), then delivery(m) → multicast(g,m’)
• …

• For any message m, send(m) → receive(m)
• For any multicast message m, multicast(g,m) → delivery(m)

• If e → e’ and e’ → e” then e → e’’
• multicast(g,m) at pi → delivery(m) at pj
• delivery(m) at pj → multicast(g,m’) at pj
• multicast(g,m) at pi → multicast(g,m’) at pj

• Application can only see when messages are “multicast” by the application
and “delivered” to the application, and not when they are sent or received by
the protocol.

Causal Order: Example

M3:1 à M3:2, M1:1 à M2:1, M1:1 à M3:1 and so should be delivered in that order
at each receiver.
M3:1 and M2:1 are concurrent and thus ok to be delivered in any (and even
different) orders at different receivers.

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

Causal vs FIFO

• Causal Ordering => FIFO Ordering

• Why?
• If two multicasts M and M’ are sent by the same

process P, and M was sent before M’, then M à M’.
• Then a multicast protocol that implements causal

ordering will obey FIFO ordering since M à M’.

• Reverse is not true! FIFO ordering does not imply causal
ordering.

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy FIFO order?
No

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy FIFO order?
No Yes

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal order?
No

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

Does this satisfy causal order?
No

Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

M1:1 is delivered at P3 after M3:1’s multicast.
Does this satisfy causal order?

Yes

Example

P2

Time
P1

P3

M1:1 M1:2

P4
Does this satisfy causal order?

No

Example

P2

Time
P1

P3

M1:1 M1:2

P4
Does this satisfy FIFO order?

No

3. Total Order

• Ensures all processes deliver all multicasts in the same
order.

• Unlike FIFO and causal, this does not pay attention to
order of multicast sending.

• Formally
• If a correct process delivers message m before m’

(independent of the senders), then any other correct
process that delivers m’ will have already delivered m.

• A reliable totally ordered multicast is also known as
“atomic multicast”.

Total Order: Example

The order of receipt of multicasts is the same at all processes.
M1:1, then M2:1, then M3:1, then M3:2
May need to delay delivery of some messages.

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

Causal vs Total

• Total ordering does not imply causal ordering.

• Causal ordering does not imply total ordering.

Hybrid variants

• We can have hybrid ordering protocols:
• Causal-total hybrid protocol satisfies both Causal and

total orders.

