Distributed Systems

CS425/ECE428

April 26 2023

Instructor: Radhika Mittal

Acknowledgements for the materials: Indy Gupta

Today’s focus

* Key-value stores in the cloud

* How to design a large-scale distributed key-value store!
» Case-study: Facebook’s Cassandra

CAP Tradeoff

* Starting point for NoSQL
Revolution Consistency

* A distributed storage
system can achieve at HBaso, HyperTable
most two of C, A, and R BigTable, Spanner

Conventional
RDBMSs
(non-replicated)

* When partition-tolerance
IS Important, you have to

choose between Partition-tolerance Availability
consistency and avallability Cassandra, RIAK

Dynamo, Voldemort

Case Study: Cassandra

Recap

* Partrtioner: identifies primary replica for a key
* hash-based or range based.

* Replication in multi-DC environments
* replicate across datacenters.
* replicate across different racks within a datacenter.

 Writes:
e Client send writes to the coordinator.
Coordinator sends query to all replicas.

Waits for X replicas to respond before returning acknowledgement to
client (X determines consistency level. o be discussed.)

Hinted handoffs to ensure writes are eventually written to all replicas.
At a replica: first log to disk, then write to memtable (in memory).
* When memtable full or old, flush to SSTable (in permanent storage).
* Periodic compaction of SSTables.

Reads

* Coordinator contacts X replicas (e.g., in same rack)
* Coordinator sends read to replicas that have responded quickest in

past.
* When X replicas respond, coordinator returns the latest-
timestamped value from among those X.

* X = based on consistency spectrum (more later).

* Coordinator also fetches value from other replicas

* Checks consistency in the background, initiating a read repair if any
two values are different.

* This mechanism seeks to eventually bring all replicas up to date.

* At areplica
e Read looks at Memtables first, and then SSTables.

* A row may be split across multiple SSTables => reads need to
touch multiple SSTables => reads slower than writes (but still fast).

Cross-DC coordination

Replicas may span multiple datacenters.

Per-DC coordinator elected to coordinate with other
(s,

“lection done via Zookeeper which runs a Bully
algorithm variant.

Membership

* Any server In cluster could be the leader.

* S0 every server needs to maintain a list of all the
other servers that are currently in the cluster.

* List needs to be updated automatically as servers
join, leave, and fall.

Cluster Membership

A

Cassandra uses gossip-based cluster membership

10120

66

10103

62

10098

63

AlW|IN]| -~

10111

65

Address

Time (local)

Heartbeat Counter

10118

64

10110

64

AlWwIN]| -~

10090

58

10111

65

. =

10120

70

10110

64

10098

70

AlW|IN]| -

10111

65

*Nodes periodically gossip their membership list

(asynchronous clocks)

(old)

(updated)

Current time : 70 at node 2

*On receipt, the local membership list is updated, as shown

*If any heartbeat older than Tfail, node is marked as failed

<

<

O@

&
&

Consistency Spectrum

Faster reads and writes

More consistency

Eventual - Strong

Eventual Consistency

* Cassandra offers Eventual Consistency
* If writes to a key stop, all replicas of key will converge.

* Originally from Amazon's Dynamo and LinkedIn's
Voldemort systems

Faster reads and writes

More consistency Strong
Eventual (e.g., Sequential)

Cassandra write and read recap

* Writes
* Client sends write request to a coordinator.
* Coordinator writes to all replicas.

* Wiaits for X replicas to respond before returning acknowledgement to the
client.

* Hinted handoff: if a replica is down, it receives the write request once it
comes back up.

* Reads
* Client sends read request to a coordinator.
* Coordinator contacts X replicas, and returns the latest returned value.

* Read repair: After returning a response, coordinator continues with fetching
values from other replicas, and initiates repairs to outdated values.

Consistency levels: value of X

* Cassandra has consistency levels.

* Client is allowed to choose a consistency level for each
operation (read/write)
* ANY:any server (may not be replica)
* Fastest: coordinator caches write and replies quickly to client

* ALL: all replicas

* Ensures strong consistency, but slowest

* ONE: at least one replica
* Faster than ALL

* QUORUM: quorum across all replicas in all datacenters (DCs)

Quorums!?

In a nutshell:

* Quorum = (typically) majority

* Any two quorums intersect .=~ Aquorum
, o A second quorum 2 N
e Client | does a write In red e \
- I S \
quorum /e | @
 Then client 2 does read in blue :' \ '
\ /
quorum . @ N "\,LAserver
\\ \v_/z/
* At least one server in blue quorum Te-enT

returns latest write ‘

Quorums faster than ALL, but still
ensure strong consistency

Five replicas of a key-value pair

Several key-value/NoSQL stores (e.g,
Riak and Cassandra) use quorums.

Read Quorums

* Reads

* Client specifies value of R (£ N = total number of replicas
of that key).

* R = read consistency level.

* Coordinator waits for R replicas to respond before
sending result to client.

* In background, coordinator checks for consistency of
remaining (N-R) replicas, and initiates read repair if
needed.

Write Quorums

* Client specifies W (£ N)
* W = write consistency level.

* Client writes new value to W replicas and returns
when It hears back from all.

* Default strategy.

Quorums in Detail (Contd.)

* R =read replica count,W = write replica count

* Necessary conditions for consistency:
* Write and read intersect at a replica. Read returns latest write.

* Two conflicting writes on a data item don't occur at the same time.

* Select values based on application
« (W=N,R=1):
* great for read-heavy workloads
« (W=I,R=N):
* great for write-heavy workloads with no conflicting writes.
« (W=N/2+1,R=N/2):
* great for write-heavy workloads with potential for write conflicts.
« (W=I,R=1):
* very few writes and reads / high availability requirement.

Cassandra Consistency Levels

* Client is allowed to choose a consistency level for each
operation (read/write)

* QUORUM: quorum across all replicas in all datacenters (DCs)
* Global consistency, but still fast

 EACH_QUORUM: quorum in every DC

* Lets each DC do its own quorum (not supported for reads)

 LOCAL_QUORUM: quorum in coordinator's DC

 Faster: only waits for quorum in first DC client contacts

Eventual Consistency

* Sources of inconsistency:
e Quorum condition not satisfied R + W < N.
R andW are chosen as such.

* when write returns before W replicas respond.

* Sloppy quorum: when value stored elsewhere if intended replica is down,
and later moved to the intended replica when 1t is up again.

* When local quorum is chosen instead of global quorum.

* Hinted-handoff and read repair help in achieving eventual consistency.

* Ifall writes (to a key) stop, then all its values (replicas) will converge
eventually.

* May still return stale values to clients (e.g., If many back-to-back writes).

* But works well when there a few periods of low writes — system converges
quickly.

Cassandra vs. RDBMS

* MySQL 1s one of the most popular RDBMS (and has
been for a while)

e On > 50 GB data

* MySQL
* Writes 300 ms avg
* Reads 350 ms avg

* Cassandra
* Writes 0.12 ms avg
* Reads |5 ms avg

* Orders of magnitude faster.

Other similar NoSQL stores

* Amazon’'s DynamoDB

* Cassandra’s data partitioning, replication, and eventual consistency
strategies inspired from Dynamo.

* Uses sloppy quorum as the default mechanism for eventual
consistency with availability.

* Uses vector clocks to capture causality between different versions
of an object.

* Dynamo: Amazon'’s Highly Available Key-value Store, SOSP2007/.

* LinkedIn’s Voldemort
* Inspired from DynamoDB.

s it a good idea to trade-off
consistency for availability?

A recent tweet by a distributed systems researcher:

Due to a shopping cart weak consistency error, my mom has found herself
with an extra 4 dozen eggs and 4 pounds of beets she didn't mean to
order.

Isn't this what I've been warning everyone about for years?

O 1 1 6 Q o4 T

Summary

* CAP theorem: cannot only achieve 2 out of 3 among
consistency, avallability, and partition-tolerance.

* Partition-tolerance is required in distributed datastores.
* Choose between consistency and avallability.

* Many modern distributed NoSQL key-value stores (e.g.
Cassandra) choose avallability, providing only eventual
consistency.

