
Distributed Systems

CS425/ECE428

March 29 2023

Instructor : Radhika Mittal

Acknowledgements for the materials: Indy Gupta and Nikita Borisov

Logistics

• My OH on Monday will be replaced by Jiangran’s (over
Zoom, but at the same time).

• Regarding HW4
• We fixed some typos in the Q2 yesterday morning.
• You should be able to solve all questions upto 2(f) already.
• You should be able solve 2(g) after today’s class, and Q3 after

coming Monday’s class.

Agenda for today

• Transaction Processing and Concurrency Control
• Chapter 16

• Transaction semantics: ACID
• Isolation and serial equivalence
• Conflicting operations
• Two-phase locking
• Deadlocks
• Timestamped ordering

• Distributed Transactions (if time)

Transaction Properties: ACID

• Atomic: all-or-nothing
• Transaction either executes completely or not at all

• Consistent: rules maintained
• Isolation: multiple transactions do not interfere with each

other
• Equivalent to running transactions in isolation

• Durability: values preserved even after crashes

Isolation

How to prevent transactions from affecting each other?

• Execute them serially at the server (one at a time).
• e.g. through a global lock.
• But this reduces number of concurrent transactions

Goal: increase concurrency and transaction throughput while
maintaining correctness (ACID).

Concurrency Control: Two approaches

• Pessimistic: assume the worst, prevent transactions from accessing
the same object

• E.g., Locking

• Optimistic: assume the best, allow transactions to write, but check
later

• E.g., Check at commit time

Pessimistic: Locking
• Grabbing a global lock is wasteful

• what if no two transactions access the same object?

• Each object has a lock
• can further improve concurrency.
• reads on the same object are non-conflicting.

• Per-object read-write locks.
• Read mode: multiple transactions allowed in
• Write mode: exclusive lock

Guaranteeing Serial Equivalence with
Locks

• Two-phase locking
• A transaction cannot acquire (or promote) any locks after it has

started releasing locks
• Transaction has two phases

1. Growing phase: only acquires or promotes locks
2. Shrinking phase: only releases locks

• Strict two phase locking: releases locks only at commit point

Can lead to Deadlocks!

Transaction T1 Transaction T2
read_lock(x)

x = getSeats(ABC123);
x = getSeats(ABC123);

if(x > 1) if(x > 1)
x = x – 1;

write_lock(x)

write(x, ABC123);
x = x – 1;

write(x, ABC123);
commit

commit

Blocked!

Blocked!

read_lock(x)

write_lock(x)

Deadlock!

T1

T2

Wait for Wait for

When do deadlocks occur?
• 3 necessary conditions for a deadlock to occur

1. Some objects are accessed in exclusive lock modes
2. Transactions holding locks are not preempted
3. There is a circular wait (cycle) in the Wait-for graph

• “Necessary” = if there’s a deadlock, these conditions are all
definitely true

• (Conditions not sufficient: if they’re present, it doesn’t imply
a deadlock is present.)

Combating Deadlocks
1. Lock all objects in the beginning in a single atomic step.

• no circular wait-for graph created (3rd deadlock condition breaks)
- may not know of all operations a priori.

2. Lock timeout: abort transaction if lock cannot be acquired within
timeout
• (2nd deadlock condition breaks)
- Expensive; leads to wasted work
- How to determine the timeout value?

• Too large: long delays
• Too small: false positives.

3. Deadlock Detection:
• keep track of Wait-for graph, and find cycles in it (e.g., periodically)
• If find cycle, there’s a deadlock

ÞAbort one or more transactions to break cycle (2nd deadlock condition breaks)

• Pessimistic: assume the worst, prevent transactions from accessing
the same object

• E.g., Locking

• Optimistic: assume the best, allow transactions to write, but check
later

• E.g., Check at commit time

Concurrency Control: Two approaches

• Increases concurrency more than pessimistic concurrency control
• Used in Dropbox, Google apps, Wikipedia, key-value stores like Cassandra, Riak,

and Amazon’s Dynamo
• Preferable than pessimistic when conflicts are expected to be rare

• But still need to ensure conflicts are caught!

Optimistic Concurrency Control

• Most basic approach
• Write and read objects at will
• Check for serial equivalence at commit time
• If abort, roll back updates made
• An abort may result in other transactions that read dirty data,

also being aborted
• Any transactions that read from those transactions also now

need to be aborted
L Cascading aborts

First cut approach

• Assign each transaction an id
• Transaction id determines its position in serialization order.
• Ensure that for a transaction T, both are true:

1. T’s write to object O allowed only if transactions that have
read or written O had lower ids than T.

2. T’s read to object O is allowed only if O was last written by a
transaction with a lower id than T.

• Implemented by maintaining read and write timestamps for the
object

• If rule violated, abort!
• Never results in a deadlock! Older transaction never waits on newer ones.

Timestamped ordering

Timestamped ordering: per-object state

• Committed value.
• Transaction id (timestamp) that wrote the committed value.
• Read timestamps (RTS): List of transaction ids (timestamps) that have

read the committed value.
• Tentative writes (TW): List of tentative writes sorted by the

corresponding transaction ids (timestamps).
• Timestamped versions of the object.

Timestamped ordering rules

Rule Tc Ti
1. write read Tc must	not	write an	object	that	has	been		read by	any	 Ti where

This	requires	that	 Tc ≥	the	maximum	read	timestamp	of	the	object.

2. write write Tc must	not	write an	object	that	has	been	writtenby	any	 Ti where

Ti >Tc

This	requires	that	Tc >	write	timestamp	of	the	committed object.

3. read write must	not	read an	object	that	has	been	writtenby	any	 Ti where
Tc >	write	timestamp	of	the	committed	object.

Ti >Tc

Ti >Tc

Tc
This	requires	that	

Timestamped ordering: write rule

Transaction Tc requests a write operation on object D
if (Tc ≥ max. read timestamp on D

&& Tc > write timestamp on committed version of D)
Perform a tentative write on D:

If Tc already has an entry in the TW list for D, update it.
Else, add Tc and its write value to the TW list.

else
abort transaction Tc

//too late; a transaction with later timestamp has already read or
written the object.

Timestamped ordering: write rule
write(b)	T3(a)	 write

(c) T3 write

T3

write(d)	T3 T1<T2<T3<T4

Time

Before

After

T2

T2 T3

Time

Before

After

T2

T2 T3

T1

T1

Time

Before

After

T1

T1

T4

T3 T4

Time

Transaction
abortsBefore

After

T4

T4

Tentative

Committed

Ti

Ti

Key:

Read	timestamps	
not	shown	in	this	

example.	
(assume	zero	

reads)

Timestamped ordering: read rule
Transaction Tc requests a read operation on object D

if (Tc > write timestamp on committed version of D) {
Ds = version of D with the maximum write timestamp that is ≤ Tc
//search across the committed timestamp and the TW list for object D.
if (Ds is committed)

read Ds and add Tc to RTS list (if not already added)
else

if Ds was written by Tc, simply read Ds
else

wait until the transaction that wrote Ds is committed or aborted, and
reapply the read rule.
// if the transaction is committed, Tc will read its value after the wait.
// if the transaction is aborted, Tc will read the value from an older
transaction.

} else
abort transaction Tc
//too late; a transaction with later timestamp has already written the object.

Timestamped ordering: read rule

(b) T3 read

Time

read
proceeds

Selected

T2

Time

read
proceeds

Selected

T2 T4

Time

read waits

Selected

T1 T2

Time

Transaction
abortsT4

Key:

Tentative

Committed

Ti

Ti

T1 < T2 < T3 < T4

(a) T3 read

(c) T3 read (d) T3 read

Timestamped ordering: committing

• Suppose T4 is ready to commit.
• Must wait until T3 commits or aborts.

• When a transaction is committed, the committed value of the object
and associated timestamp are updated, and the corresponding write is
removed from TW list.

Time

Writes at object O: T1 T3 T4

Time

Writes at object O: T1 T3 T4

Time

After T3 commits: T3 T4

Lost Update Example with Timestamped Ordering

Transaction T1 Transaction T2
x = getSeats(ABC123);

x = getSeats(ABC123);
if(x > 1) if(x > 1)

x = x – 1;
write(x, ABC123);

x = x – 1;

write(x, ABC123);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS:
TW:

Lost Update Example with Timestamped Ordering

Transaction T1 Transaction T2
x = getSeats(ABC123);

x = getSeats(ABC123);
if(x > 1) if(x > 1)

x = x – 1;
write(x, ABC123);

x = x – 1;

write(x, ABC123);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS: 1
TW:

Lost Update Example with Timestamped Ordering

Transaction T1 Transaction T2
x = getSeats(ABC123);

x = getSeats(ABC123);
if(x > 1) if(x > 1)

x = x – 1;
write(x, ABC123);

x = x – 1;

write(x, ABC123);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS: 1, 2
TW:

Lost Update Example with Timestamped Ordering

Transaction T1 Transaction T2
x = getSeats(ABC123);

x = getSeats(ABC123);
if(x > 1) if(x > 1)

x = x – 1;
write(x, ABC123);

x = x – 1;

write(x, ABC123);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS: 1, 2
TW:

Abort!

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123);
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS:
TW:

ABC789: state
committed value = 5
committed timestamp = 0
RTS:
TW:

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123);
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS:
TW:

ABC789: state
committed value = 5
committed timestamp = 0
RTS:
TW:

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123);
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS: 1
TW:

ABC789: state
committed value = 5
committed timestamp = 0
RTS:
TW:

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123);
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS: 1
TW:

ABC789: state
committed value = 5
committed timestamp = 0
RTS:
TW:

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123);
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS: 1
TW:

ABC789: state
committed value = 5
committed timestamp = 0
RTS: 1
TW:

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123);
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS: 1
TW: (5, 1)

ABC789: state
committed value = 5
committed timestamp = 0
RTS: 1
TW:

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123);
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS: 1
TW: (5, 1)

ABC789: state
committed value = 5
committed timestamp = 0
RTS: 1
TW:

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123);
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS: 1
TW: (5, 1)

ABC789: state
committed value = 5
committed timestamp = 0
RTS: 1
TW:

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123); wait
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS: 1
TW: (5, 1)

ABC789: state
committed value = 5
committed timestamp = 0
RTS: 1
TW:

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123); wait
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS: 1
TW: (5, 1)

ABC789: state
committed value = 5
committed timestamp = 0
RTS: 1
TW:

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123); wait
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS: 1
TW: (5, 1)

ABC789: state
committed value = 5
committed timestamp = 0
RTS: 1
TW: (10, 1)

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123); wait
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10
committed timestamp = 0
RTS: 1
TW: (5, 1)

ABC789: state
committed value = 5
committed timestamp = 0
RTS: 1
TW: (10, 1)

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123); wait
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10 5
committed timestamp = 0 1
RTS: 1
TW: (5, 1)

ABC789: state
committed value = 5 10
committed timestamp = 0 1
RTS: 1
TW: (10, 1)

Next Example with Timestamped Ordering

Transaction T1 Transaction T2

x = getSeats(ABC123);
y = getSeats(ABC789);
write(x-5, ABC123);

x = getSeats(ABC123); wait
y = getSeats(ABC789);

write(y+5, ABC789);

print(“Total:” x+y);
commit

commit

ABC123: state
committed value = 10 5
committed timestamp = 0 1
RTS: 1
TW: (5, 1)

ABC789: state
committed value = 5 10
committed timestamp = 0 1
RTS: 1
TW: (10, 1)

T2 then proceeds after T1
commits

Concurrency Control: Summary

• How to prevent transactions from affecting one another?
• Goal: increase concurrency and transaction throughput while

maintaining correctness (ACID).
• Target serial equivalence.
• Two approaches:

• Pessimistic concurrency control: locking based.
• read-write locks with two-phase locking and deadlock

detection.
• Optimistic concurrency control: abort if too late.

• timestamped ordering.

