Distributed Systems

CS425/ECE428

March 29 2023

Instructor: Radhika Mittal

Acknowledgements for the materials: Indy Gupta and Nikita Borisov

Logistics

* My OH on Monday will be replaced by Jiangran’s (over
Zoom, but at the same time).

* Regarding HW4
* We fixed some typos in the Q2 yesterday morning.
* You should be able to solve all questions upto 2(f) already.
* You should be able solve 2(g) after today’s class, and Q3 after
coming Monday’s class.

Agenda for today

* Transaction Processing and Concurrency Control
* Chapter 16

* Deadlocks
* Timestamped ordering

* Distributed Transactions (if time)

Transaction Properties: ACID

* Atomic: all-or-nothing
* Transaction erther executes completely or not at all
* Consistent; rules maintained
* Isolation: multiple transactions do not interfere with each

other
* Equivalent to running transactions in isolation

* Durabllity: values preserved even after crashes

|Isolation

How to prevent transactions from dffecting each other?

* Execute them serially at the server (one at a time).
* e.g.through a global lock.
* But this reduces number of concurrent transactions

Goal: increase concurrency and transaction throughput while
maintaining correctness (ACID).

Concurrency Control: Two approaches

* Pessimistic: assume the worst, prevent transactions from accessing
the same object

* Eg,Locking

* Optimistic: assume the best, allow transactions to write, but check
later

* Eg,Check at commit time

Pessimistic: Locking

* Grabbing a global lock is wasteful
* what If no two transactions access the same object!

* Each object has a lock
* can further improve concurrency.
* reads on the same object are non-conflicting.

* Per-object read-write locks.
* Read mode: multiple transactions allowed In
:exclusive lock

Guaranteeing Serial Equivalence with
Locks

* A transaction cannot acquire (or promote) any locks after it has
started releasing locks

* Iransaction has two phases
|. Growing phase: only acquires or promotes locks
2. Shrinking phase: only releases locks

* Strict two phase locking: releases locks only at commit point

Can lead to Deadlocks!

Transaction T |

read lock(x)
x = getSeats(ABCI23);

if(x > 1)

X =x-1;
write_lock(x) Blocked!
write(x, ABC123);

commit

Transaction T2

read_lock(x)
x = getSeats(ABC123);

ifx > 1)

X =x— |
write_lock(x) Blocked!
write(x, ABC123);

commit

Deadlock!
T1
Wait for Wait for
T2

When do deadlocks occur?

* 3 necessary conditions for a deadlock to occur
|. Some objects are accessed in exclusive lock modes

2. Transactions holding locks are not preempted
3. There is a circular wait (cycle) in the Wait-for graph

* "Necessary’ = If there’s a deadlock, these conditions are all
definitely true

* (Conditions not sufficient: If they're present, it doesn't imply
a deadlock is present.)

Combating Deadlocks

|, Lock all objects in the beginning In a single atomic step.
* no circular wait-for graph created (3™ deadlock condition breaks)

- may not know of all operations a priori.
2. Lock timeout: abort transaction if lock cannot be acquired within

timeout

e (2™ deadlock condition breaks)

- Expensive; leads to wasted work

- How to determine the timeout value!

* Too large: long delays
* Too small: false positives.

3. Deadlock Detection:
* keep track of Wait-for graph, and find cycles in it (e.g., periodically)

* Iffind cycle, there's a deadlock
—Abort one or more transactions to break cycle (2"® deadlock condition breaks)

Concurrency Control: Two approaches

* Optimistic: assume the best, allow transactions to write, but check
later

* Eg,Check at commit time

Optimistic Concurrency Control

* Increases concurrency more than pessimistic concurrency control

* Used in Dropbox, Google apps, Wikipedia, key-value stores like Cassandra, Riak,
and Amazon’s Dynamo

* Preferable than pessimistic when conflicts are expected to be rare
* But still need to ensure conflicts are caught!

First cut approach

* Most basic approach
* Write and read objects at will
* Check for serial equivalence at commit time
* If abort, roll back updates made

* An abort may result in other transactions that read dirty data,
also being aborted

* Any transactions that read from those transactions also now
need to be aborted

® Cascading aborts

T | ! ol
]] T2 e 2
Timestamped ordering

* Assign each transaction an id

* Transaction id determines its posrition in serialization order.

Ensure that for a transaction T, both are true:

|, T's write to object O allowed only if transactions that have
read or written O had lower ids than T.

2. T'sread to object O is allowed only if O was last written by a
transaction with a lower id than T.

Implemented by maintaining read and write timestamps for the
object

If rule violated, abort!

Never results in a deadlock! Older transaction never waits on newer ones.

Timestamped ordering: per-object state

* Committed value.
* Transaction id (timestamp) that wrote the committed value.
* Read timestamps (RTS): List of transaction ids (timestamps) that have
read the committed value.
* Tentative writes (TW): List of tentative writes sorted by the
corresponding transaction ids (timestamps).
* Timestamped versions of the object.

A— : E_E\ ! ZT?/Z

TC QWi > %)

Timestamped ordering rules

Rule T, T,

1. write read T. must not write an object that has beenread by any T, where T, >T_

This requires that 7. > the maximum read timestamp of the object.

2. write write T. mustnot write an object that has beenwrittenby any T, whereT, >T.

This requires that T.> write timestamp of the committed object.

3. read write T. must not read an object that has been writtenby any T, whereT,;>T,
This requires that T. > write timestamp of the committed object.

, Ipl ¢ T 12

Timestamped ordering: write rule

72—
D =
Transaction T, requests a write operation on object D
it (Tc 2 max. read timestamp on D
&& Tc > write timemitted version of D)
Perform a tentative write on D: —
If T. already has an entry in the TW list for D, update it.
Else, aad I and its write value to the TW list.

else
abort transaction T
/ltoo late; a transaction with later timestamp has already read or
written the object.

Timestamped ordering: write rule

(a) T; write (b) T; write
Before | 12 Before = T4 To
After To T3 After | T, Ts T3

» Time ® Time
(c) T; write (d) T; write

Transaction

Before | 1 T4 Before | |4 aborts
After T4 T, Ty After T,

® Time » Time

Key: T,
Committed
T,
Tentative
T,<T,<T5<T,

Read timestamps
not shown in this
example.
(assume zero
reads)

@3__;2,,9,@,,“1 (/P(l Gl @
Timestamped ordering: read rule '~

Transaction T requests a read operation on object D
—=f (T_ > write timestamp on committed version of D) {
D, = version of D with the maximum write timestamp that is < T,
/Isearch across the committed timestamp and the TW list for object D.
it (D, 1s committed)
read D, and add T, to RTS list (if not already added)

else 2 I ? G
it D, was written by T, simply read D,

else
A wait until the transaction that wrote D, is committed or aborted, and

reapply the read rule,

/1'if the transaction is committed, T will read its value after the wait.
/1'if the transaction is aborted, T_will read the value from an older
transaction.

} else
A abort transaction T,
/Itoo late; a transaction with later timestamp has already written the object.

Timestamped ordering: read rule

(a) T, read (b) T; read
read T . read
T2 proceeds 2 4 proceeds
I I
Selected _
Selected > Time » Time
(c) T, read (d) T, read
read waits Transaction
K E Ta aborts
I
Selected - Time > Time

Key:

Ti

Committed

T

Tentative

T, <T, < T3< Ty

Timestamped ordering: committing
c ¢ 4

Writes at object O: T4 T3 Ty

> Time

* Suppose T, Is ready to commit.
* Must wart until T3 commits or aborts.

* When a transaction is committed, the committed value of the object
and assoclated timestamp are updated, and the corresponding write Is
removed from TWV list.

Writes at object O: N T, (T After T; commits: T3 Ty

® Time

Lost Update Example with Timestamped Ordering

ABCI|23: state
committed value = 10

Transaction T2 | e timestamp = 0

Transaction T |

x = getSeats(ABCI23); RTS:
x = getSeats(ABCI23); W
if(x >) if(x >)
X =x—1;
write(x, ABC123);
X =x-1;

write(x, ABC123);
commit

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
commit |
|
|

Lost Update Example with Timestamped Ordering

ABCI|23: state
committed value = 10

Transaction T2 committed timestamp = 0

Transaction T |

x = getSeats(ABCI23); RTS: |
x = getSeats(ABCI 23);[W
if(x >) if(x >)
X =x—1;
write(x, ABC123);
X =x-1;

write(x, ABC123);
commit

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
commit |
|
|

Lost Update Example with Timestamped Ordering

ABCI|23: state
committed value = 10

Transaction T2 committed timestamp = 0

Transaction T |

x = getSeats(ABCI23); RTS: 1,2
x = getSeats(ABCI23); W
if(x > 1) if(x > 1)
X =x—l;
write(x, ABC123);
X =x—l;

write(x, ABC123);
commit

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
commit .
|
|

Lost Update Example with Timestamped Ordering

ABCI|23: state
committed value = 10

Transaction T2 committed timestamp = 0

Transaction T |

x = getSeats(ABCI23); RTS: 1,2
x = getSeats(ABCI23); W
if(x > 1) if(x > 1)
X =x—l;
write(x, ABC123);
x=x—1; Abort!

write(x, ABC123);
commit

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
commit .
|
|

Next Example with Timestamped Ordering

|
| ABC123: state

Transaction T2 | committed value = 10
| committed timestamp = 0O
| RTS:

I TW:

Transaction T|

|
|
I
|
I
:
x = getSeats(ABCI23); |
y = getSeats(ABC789); |
write(x-5,ABCI123); |
| x = getSeats(ABCI 23);
|y = getdeats(ABC/89);
write(y+5,ABC/89); |
| ABC7/89: state
|
|
|
I
|
I
|
|
:

ommitted value = 5

ommitted timestamp = 0
RTS:
TW.

print("“Total:" x+y); C
commit C
commit

Next Example with Timestamped Ordering

|
| ABC123: state

Transaction T2 | committed value = 10

| committed timestamp = 0O

| RTS:

Transaction T|

I
|
|
I
I
:
x = getSeats(ABCI23); |
y = getSeats(ABC789); |
write(x-5,ABC123); |
| x = getSeats(ABCI 23);
|y = getdeats(ABC/89);
write(y+5,ABC789); |
:
I
|
I
|
|
I
I
|
I
:

ommitted value = 5
ommitted timestamp = 0

print("“Total:" x+y);
commit

|
|
|
|
|
|
|
|
|
:
: ABC/89: state
:
:
commit |
:
|
|

Next Example with Timestamped Ordering

|
| ABC123: state

Transaction T2 | committed value = 10

| committed timestamp = 0O

| RTS: |

Transaction T|

I
|
|
I
I
:
x = getSeats(ABCI23); |
y = getSeats(ABC789); |
write(x-5,ABC123); |
| x = getSeats(ABCI 23);
|y = getdeats(ABC/89);
write(y+5,ABC789); |
:
I
|
I
|
|
I
I
|
I
:

ommitted value = 5
ommitted timestamp = 0

print("“Total:" x+y);
commit

|
|
|
|
|
|
|
|
|
:
: ABC/89: state
:
:
commit |
:
|
|

Next Example with Timestamped Ordering

Transaction T|

x = getSeats(ABCI23);
y = getSeats(ABC/89);
write(x-5, ABC123);

write(y+5, ABC789);

commit

Transaction T2

x = getSeats(ABCI23);
y = getSeats(ABC789);

print("“Total:" x+y);

commit

ABC|23: state
committed value = |0

committed timestamp = 0
RTS: |

ABC/89: state
ommitted value = 5
ommitted timestamp = 0

Next Example with Timestamped Ordering

Transaction T|

x = getSeats(ABCI23);
y = getSeats(ABC/89);
write(x-5, ABC123);

write(y+5, ABC789);

commit

Transaction T2

x = getSeats(ABCI23);
y = getSeats(ABC789);

print("“Total:" x+y);

commit

ABC|23: state
committed value = |0

committed timestamp = 0
RTS: |
TW.

ABC/89: state
ommitted value = 5

C
committed timestamp = 0

RTS: |
TW:

Next Example with Timestamped Ordering

|
| ABC123: state

Transaction T2 | committed value = 10
| committed timestamp = 0O
| RTS: |

I TW:

Transaction T|

I
|
|
I
I
|
x = getSeats(ABCI23); |
y = getSeats(ABC/89); |
write(x-5, ABC123); |
| x = getSeats(ABCI 23);
|y = getSeats(ABC/89);
write(y+5,ABC789); |
| ABC7/89: state
|
I
|
|
I
I
|
I
:

ommitted value = 5
ommitted timestamp = 0

print("“Total:" x+y); C
commit C

commit RTS: |
TW:

Next Example with Timestamped Ordering

|
| ABC123: state

Transaction T2 | committed value = 10
| committed timestamp = 0O
| RTS: |

| TW: (5, 1)

Transaction T|

I
|
|
I
I
|
x = getSeats(ABCI23); |
y = getSeats(ABC/89); |
write(x-5, ABC123); |
| x = getSeats(ABCI 23);
|y = getSeats(ABC/89);
write(y+5,ABC789); |
| ABC7/89: state
|
I
|
|
I
I
|
I
:

ommitted value = 5
ommitted timestamp = 0

print("“Total:" x+y); C
commit C

commit RTS: |
TW:

Next Example with Timestamped Ordering

|
| ABC123: state

Transaction T2 | committed value = 10
| committed timestamp = 0O
| RTS: |

| TW: (5, 1)

Transaction T|

I
I
I
I
I
|
x = getSeats(ABCI23); |
y = getSeats(ABC789); |
write(x-5,ABC123); |
i x = getSeats(ABCI23);
Y= getSeats(ABC/89);
write(y+5,ABC789); |
| ABC/89: state
|
I
I
I
I
I
|
I
:

ommitted value = 5
ommitted timestamp = 0

print("“Total:" x+y); C
commit C

commit RTS: |
TW:

Next Example with Timestamped Ordering

|
| ABC123: state

Transaction T2 | committed value = 10
| committed timestamp = 0O
| RTS: |

| TW: (5, 1)

Transaction T|

x = getSeats(ABCI23);
y = getSeats(ABC/89);
write(x-5, ABC123);

|

|

|

|

|

|

|

|

|

|

|

|

|

i x = getSeats(ABCI23); vvaiﬂ

Ly = getSeats(ABC789);
write(y+5,ABC/89); |
| ABC789: state
|
|
|
|
|
|
|
|
|
|

ommitted value = 5
ommitted timestamp = 0

print("“Total:" x+y); C
commit C

commit RTS: |
TW:

Next Example with Timestamped Ordering

|
| ABC123: state

Transaction T2 | committed value = 10
| committed timestamp = 0O
| RTS: |

| TW: (5, 1)

Transaction T|

x = getSeats(ABCI23);
y = getSeats(ABC/89);
write(x-5, ABC123);

I

I

I

I

I

|

I

I

I

I

I

|

I

i x = getSeats(ABCI23); wail

oy = getSeats(ABC/89);
write(y+5,ABC/89); |
| ABC789: state
I
|
I
I
I
I
I
|
I
I

ommitted value = 5
ommitted timestamp = 0

print("“Total:" x+y); C
commit C

commit RTS: |
TW:

Next Example with Timestamped Ordering

|
| ABC123: state

Transaction T2 | committed value = 10
| committed timestamp = 0O
| RTS: |

| TW: (5, 1)

Transaction T|

x = getSeats(ABCI23);
y = getSeats(ABC/89);
write(x-5, ABC123);

4 = getSeats(ABCI123); wart
y = getSeats(ABC/89);
write(y+5, ABC/89);
) ABC/89: state
ommitted value = 5

ommitted timestamp = 0
RTS: |
TW: (10, 1)

rint("Total:” x+vy);
commit
commit

|
|
I
|
|
I
|
I C
I
I C
|
I
|
|
I
|
|

Next Example with Timestamped Ordering

|
| ABC123: state

Transaction T2 | committed value = 10
| committed timestamp = 0O
| RTS: |

| TW: (5, 1)

Transaction T|

x = getSeats(ABCI23);
y = getSeats(ABC/89);
write(x-5, ABC123);

I

I

I

I

I

|

I

I

I

I

I

|

I

i x = getSeats(ABCI23); wail

oy = getSeats(ABC/89);
write(y+5,ABC/89); |
| ABC789: state
I
|
I
I
I
I
I
|
I
I

ommitted value = 5

ommitted timestamp = 0
RTS: |
TW: (10, 1)

print("“Total:" x+y);
commit

|
|
|
|
|
|
|
I C
|
| C
|
commit |
|
|
|
|

Next Example with Timestamped Ordering

Transaction T|

x = getSeats(ABCI23)
y = getSeats(ABC/89)
write(x-5, ABC123);

write(y+5, ABC789);

commit

)

Transaction T2

|
| ABC123: state
| committed value = +6-5

| committed timestamp = ©-|

|RTS: |
L TW: (55

x = getSeats(ABCI123); wart

y = getSeats(ABC789);

print("“Total:" x+y);

commit

ABC/89: state
ommitted value = 5-10

ommitted timestamp =-0—|
RTS: |

TWi e

C
C

Next Example with Timestamped Ordering

|
| ABC123: state

Transaction T2 | committed value = +6-5
| committed timestamp = ©-|
| RTS: |

| TWHo)

Transaction T|

x = getSeats(ABCI23);
y = getSeats(ABC/89);
write(x-5, ABC123);

I

I

I

I

I

I

I

I

I

I

I

|

| x = getSeats(ABCI 23); waif

Ly = getSeats(ABC/89);
write(y+5,ABC/89); |
| ABC789: state
| ommitted value = 5-10
|
I
I
I
I
I
:

ommitted timestamp =-0—|
RTS: |

TWi e

print("“Total:" x+y); C
commit C
commit

T2 then proceeds after T |
commits

Concurrency Control: Summary

* How to prevent transactions from dffecting one another’?
* Goal: increase concurrency and transaction throughput while
maintaining correctness (ACID).
* Tlarget serial equivalence.
* Two approaches:
* Pessimistic concurrency control: locking based.
* read-write locks with two-phase locking and deadlock
detection.
* Optimistic concurrency control: abort If too late.
* timestamped ordering.

