
Distributed Systems

CS425/ECE428

March 8 2023

Instructor : Radhika Mittal

Logistics

• HW2 is due today.

• Please checkout post #378 on CampusWire regarding
your midterm exams.
• Reserve a slot if you haven’t already.
• Submit your Letters of Accommodations to CBTF, if required.
• Syllabus: everything coverded in class upto and including Paxos.
• Closed-book exam: cannot refer to any materials / cheat sheets.
• CBTF will provide calculator and scratch paper.

Agenda for today
• Consensus
• Consensus in synchronous systems

• Chapter 15.4
• Impossibility of consensus in asynchronous systems

• We will not cover the proof in details
• Good enough consensus algorithm for asynchronous systems:

• Paxos made simple, Leslie Lamport, 2001
• Other forms of consensus algorithm

• Raft (log-based consensus)
• Block-chains (distributed consensus)

1. Leader election:
• Select one of the servers to act as leader
• Detect crashes, choose new leader
• Time is divided into monotonically increasing “terms”.

• Each term starts with a leader election.
• Only one leader can be per term.

2. Neutralizing old leaders
• Use “terms” exchanged with RPCs to step down.

3. Normal operation (basic log replication)
4. Safety and consistency after leader changes

Raft Recap

• Log entry = index, term, command
• Log stored on stable storage (disk); survives crashes
• Entry is committed by the leader when certain conditions are met*.

• Durable, will eventually be executed by state machines
• * we will get back to this.

Log Structure
1

add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1
ret

2
mov

3
div

3
shl

3
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log	index

followers

committed	entries

term

command
s1

s2

s3

s4

s5

High level of coherency between logs:
Raft guarantees that:
• If log entries on different servers have same index

and term:
• They store the same command
• The logs are identical in all preceding entries

• If a given entry is committed, all preceding entries
are also committed

Log Consistency

1
add

1 2 3 4 5 6
3

jmp
1

cmp
1
ret

2
mov

3
div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

4
add

• Each AppendEntries RPC contains index and term of
entry preceding new ones
• Follower must contain matching entry; otherwise it

rejects request
• Implements an induction step, ensures coherency

AppendEntries Consistency Check

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

1 2 3 4 5

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:
matching	entry

AppendEntries fails:
mismatch

• At beginning of new leader’s term:
• Old leader may have left entries partially replicated
• No special steps by new leader: just start normal operation
• Leader’s log is “the truth”
• Will eventually make follower’s logs identical to leader’s
• Unless a new leader gets elected during the process.

• Multiple crashes can leave many extraneous log entries:

Leader Changes

1 2 3 4 5 6 7 8log	index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 31

1 1

7 7

2 2 4 4 4

2

7

term s1

s2

s3

s4

s5

Log Inconsistencies

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log	index

leader	for	term	8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Extraneous
Entries

Missing
Entries

• New leader must make follower logs consistent with its own
• Delete extraneous entries
• Fill in missing entries

• Leader keeps nextIndex for each follower:
• Index of next log entry to send to that follower
• Initialized to (leader’s last index + 1)

• When AppendEntries consistency check fails, decrement nextIndex
and try again:

Repairing Follower Logs

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log	index

leader	for	term	7

1 41 1

1 1 1
followers

2 2 33 3 3 32

(a)

(b)

nextIndex

• When follower overwrites inconsistent entry, it
deletes all subsequent entries:

Repairing Logs, cont’d

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11log	index

leader	for	term	7

1 1 1follower	(before) 2 2 33 3 3 32

nextIndex

1 1 1follower	(after) 4 Leader	then	writes	other	
entries	from	index	5	onwards

Once a log entry has been applied to a state machine, no other state
machine must apply a different value for that log entry.

• Raft safety property:
• If a leader has decided that a log entry is committed, that entry

will be present in the logs of all future leaders
• This guarantees the safety requirement
• Leaders never overwrite entries in their logs
• Only entries in the leader’s log can be committed
• Entries must be committed before applying to state machine

Safety Requirement for log consensus

Committed	→	Present	in	future	leaders’	logs

Restrictions	on
commitment

Restrictions	on
leader	election

• During elections, choose candidate with log most likely to
contain all committed entries
• Candidates include log info in RequestVote RPCs

(index & term of last log entry)
• Voting server V denies vote if its log is “more up-to-date”:

(lastTermV > lastTermC) ||
(lastTermV == lastTermC) && (lastIndexV > lastIndexC)

• Leader will have “most complete” log among electing majority

Picking the Best Leader

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2 unavailable	during	leader	
transition

committed?

Leader for term 2

• Suppose a server S in term currentTerm has voted for process with
id votedFor in that term.
• When it receives RequestVote RPC from process candidateId with

term voteRequestTerm:
If voteRequestTerm < currentTerm

Reply false, return.
If voteRequestTerm > currentTerm

currentTerm = voteRequestTerm, votedFor = null
If (candidate’s log is at least as up-to-date S’s log) and (votedFor is null or
candidateId)

Grant vote, votedFor = candidateId

Election Basics: handling RequestVote RPCs

• When can a leader commit entries?

• Leader decides entry in term 4 is committed
• Safe: leader for term 3 must contain entry 4

• What about committing entry in term 5?
• Perhaps leader can commit an entry once replicated on

majority of servers?

Committing Entry from Current Term

1 2 3 4 5 6

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2

AppendEntries just
succeeded

Can’t	be	elected	as
leader	for	term	3

Leader	for
term	2

• Leader is trying to finish committing entry from an
earlier term

• Entry 3 not safely committed:
• s5 can be elected as leader for term 5
• If elected, it will overwrite entry 3 on s1, s2, and s3!

Committing Entry from Earlier Term

1 2 3 4 5 6

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2 AppendEntries just
succeeded

3

4

3

Leader	for
term	4

3

• For a leader to decide an
entry is committed:
• Must be stored on a majority of

servers
• At least one new entry from

leader’s current term must also
be stored on majority of servers

• Once entry 4 committed:
• s5 cannot be elected leader for

term 5
• Entries 3 and 4 both safe

New Commitment Rules

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

Leader	for
term	4

4

4

3

Once a log entry has been applied to a state machine, no other state
machine must apply a different value for that log entry.

• Raft safety property:
• If a leader has decided that a log entry is committed, that entry

will be present in the logs of all future leaders
• This guarantees the safety requirement
• Leaders never overwrite entries in their logs
• Only entries in the leader’s log can be committed
• Entries must be committed before applying to state machine

Safety Requirement for log consensus

Committed	→	Present	in	future	leaders’	logs

Restrictions	on
commitment

Restrictions	on
leader	election

March	3,	2013 Raft	Consensus	Algorithm Slide	19

• Respond to RPCs from candidates and leaders.
• Convert to candidate if election timeout elapses without

either:
• Receiving valid AppendEntries RPC, or
• Granting vote to candidate

Followers

• Increment currentTerm, vote for self
• Reset election timeout
• Send RequestVote RPCs to all other servers, wait for either:
• Votes received from majority of servers: become leader
• AppendEntries RPC received from new leader: step

down
• Election timeout elapses without election resolution:

increment term, start new election
• Discover higher term: step down

Candidates

Each server persists the following to stable storage
synchronously before responding to RPCs:
currentTerm latest term server has seen (initialized to 0

on first boot)
votedFor candidateId that received vote in current

term (or null if none)
log[] log entries

Persistent	State

term term when entry was received by leader
index position of entry in the log
command command for state machine

Log	Entry

Invoked by candidates to gather votes.

Arguments:
candidateId candidate requesting vote
term candidate's term
lastLogIndex index of candidate's last log entry
lastLogTerm term of candidate's last log entry

Results:
term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Implementation:
1. If term > currentTerm, currentTerm← term

(step down if leader or candidate)
2. If term == currentTerm, votedFor is null or candidateId,

and candidate's log is at least as complete as local log,
grant vote and reset election timeout

RequestVote RPC

Invoked by leader to replicate log entries and discover
inconsistencies; also used as heartbeat .

Arguments:
term leader's term
leaderId so follower can redirect clients
prevLogIndex index of log entry immediately preceding

new ones
prevLogTerm term of prevLogIndex entry
entries[] log entries to store (empty for heartbeat)
commitIndex last entry known to be committed

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLogIndex and prevLogTerm

Implementation:
1. Return if term < currentTerm
2. If term > currentTerm, currentTerm← term
3. If candidate or leader, step down
4. Reset election timeout
5. Return failure if log doesn’t contain an entry at

prevLogIndex whose term matches prevLogTerm
6. If existing entries conflict with new entries, delete all

existing entries starting with first conflicting entry
7. Append any new entries not already in the log
8. Advance state machine with newly committed entries

AppendEntries RPC

Raft	Protocol	Summary

• Initialize nextIndex for each to last log index + 1
• Send initial empty AppendEntries RPCs (heartbeat) to each

follower; repeat during idle periods to prevent election
timeouts

• Accept commands from clients, append new entries to local
log

• Whenever last log index ≥ nextIndex for a follower, send
AppendEntries RPC with log entries starting at nextIndex,
update nextIndex if successful

• If AppendEntries fails because of log inconsistency,
decrement nextIndex and retry

• Mark log entries committed if stored on a majority of
servers and at least one entry from current term is stored on
a majority of servers

• Step down if currentTerm changes

Leaders

• Link on the course website.

• Play with the visualization at raft.github.io

• The concepts covered Section 6 and beyond are not
in your syllabus.

More details in Raft paper

Agenda for today
• Consensus
• Consensus in synchronous systems

• Chapter 15.4
• Impossibility of consensus in asynchronous systems

• We will not cover the proof in details
• Good enough consensus algorithm for asynchronous systems:

• Paxos made simple, Leslie Lamport, 2001
• Other forms of consensus algorithm

• Raft (log-based consensus)
• Block-chains (distributed consensus)

• Implement a distributed replicated state machine that
maintains an account ledger (= bank).
• No user should be able to “double-spend”.
• Need to know of all transactions to validate this.
• Who does this validation? Cannot trust a single central authority.

• Any participant (replica) should be able to validate.
• All replicas must agree on the single history on transaction

ordering.
• Scale to thousands of replicas distributed across the world.
• Allow old replicas to fail, new replicas to join seamlessly.
• Withstand various types of attacks.

Bitcoins

• Why not use Paxos / Raft?
• Need to scale to thousands of replicas across the world.
• May not even know of all replicas a priori.
• Participants may leave / join dynamically.
• Paxos/Raft are ill-suited for such a setup.

• Leader election in Raft or proposals in Paxos require communication with
at least a majority of servers.

• Require knowing the number of replicas.
• ….

• So how does blockchain work?
• Focus of today’s class. Only a high-level discussion.

Uses Blockchains for Consensus

Transactions grouped into a block that gets added to
the chain (history of transactions) by the “leader of

that block”.

How is this done? Next class.

Basic Idea

MP2: Raft Leader Election and Log
Consensus

• Lead TA: Jiangran Wang

• Objective:
• Implement a leader-based consensus protocol for replicated state

machine, that maintains log consensus even when nodes crash or
get temporarily disconnected.

• Task:
• Beef up a skeleton code provided to you to implement Raft leader

election and log consensus.
• We provide an emulation framework and a test suite.
• Strive to pass all the test cases provided in our test suite.

MP2: Logistics

• Due on April 5th.
• Late policy: Can use part of your 168hours of grace period

accounted per student over the entire semester.

• Must be implemented in Go.
• The framework we provide is in Go.

• Read the specification and the comments in the provided
code carefully.

• Start early!!
• MP2 is harder than MP1.

