
Distributed Systems

CS425/ECE428

Feb 27 2023

Instructor : Radhika Mittal

Acknowledgements for some of the materials: Indy Gupta

Today’s agenda

• Wrap up leader election
• Chapter 15.3

• Consensus

Recap: Leader Election
• In a group of processes, elect a Leader to undertake special tasks

• Let everyone know in the group about this Leader.
• Safety condition:

• During the run of an election, a correct process has either not yet elected
a leader, or has elected process with best attributes.

• Liveness condition:
• Election run terminates and each process eventually elects someone.

• Two classical algorithms:
• Ring-based algorithm
• Bully algorithm

• Difficult to ensure both safety and liveness in an asynchronous system under
failures.

Recap: Leader Election
• In a group of processes, elect a Leader to undertake special tasks

• Let everyone know in the group about this Leader.
• Safety condition:

• During the run of an election, a correct process has either not yet elected
a leader, or has elected process with best attributes.

• Liveness condition:
• Election run terminates and each process eventually elects someone.

• Two classical algorithms:
• Ring-based algorithm
• Bully algorithm

• Difficult to ensure both safety and liveness in an asynchronous system under
failures.

Bully Algorithm

•When a process wants to initiate an election
• if it knows its id is the highest
• it elects itself as coordinator, then sends a Coordinator message to

all processes with lower identifiers. Election is completed.
• else

• it initiates an election by sending an Election message
• (contd.)

Bully Algorithm (2)

• else it initiates an election by sending an Election message
• Sends it to only processes that have a higher id than itself.
• if receives no answer within timeout, calls itself leader and sends

Coordinator message to all lower id processes. Election completed.
• if an answer received however, then there is some non-faulty

higher process => so, wait for coordinator message. If none
received after another timeout, start a new election run.

• A process that receives an Election message replies with disagree

message, and starts its own leader election protocol (unless it has
already done so).

Bully Algorithm (2)

• else it initiates an election by sending an Election message
• Sends it to only processes that have a higher id than itself.
• if receives no answer within timeout, calls itself leader and sends

Coordinator message to all lower id processes. Election completed.
• if an answer received however, then there is some non-faulty

higher process => so, wait for coordinator message. If none
received after another timeout, start a new election run.

• A process that receives an Election message replies with disagree

message, and starts its own leader election protocol (unless it has
already done so).

Timeout values
• Assume the one-way message transmission time (T) is known.

• First timeout value (when the process that has initiated election waits for the
first response)
• Must be set as accurately as possible.

• If it is too small, a lower id process can declare itself to be the coordinator
even when a higher id process is alive.

• What should be the first timeout value be, given the above assumption?
• 2T + (processing time) ≈ 2T

• When the second timeout happens (after ‘disagree’ message), election is re-
started.
• A very small value will lead to extra “Election” messages.
• A suitable option is to use the worst-case turnaround time.

Performance Analysis
• Best-case

• Second-highest id detects leader failure
• Highest remaining id initiates election.

• Sends (N-2) Coordinator messages
• Turnaround time: 1 message transmission time (T)

• Worst-case: For simplicity, assume no failures after a process calls for election.
• if any lower id process detects failure and starts election.
• Turnaround time: 4 message transmission times (4T)

Bully Algorithm: Example

disagree
disagree

P1

P2

P3

P4

P0

P5

1. P2 initiates election 2. P2 receives "replies

P1

P2

P3

P4

P0

P5

3. P3 & P4 initiate election

P1

P2

P3

P4

P0

P5

P1

P2

P3

P4

P0

P5

4. P3 receives reply

disagree

ElectionElection

Election
Election

Election

P1

P2

P3

P4

P0

P5

5. P4 receives no
reply

P1

P2

P3

P4

P0

P5

5. P4 announces itself

coordin
ator

P4 waits for T more time
after P2 receives its
“disagree” message.

T T

T T

P2 initiates election after detecting P5’s failure.

Analysis
• Best-case

• Second-highest id detects leader failure
• Highest remaining id initiates election.

• Sends (N-2) Coordinator messages
• Turnaround time: 1 message transmission time

• Worst-case: For simplicity, assume no failures after a process calls for election.
• Turnaround time: 4 message transmission times

• if any lower id process detects failure and starts election.
• Election + (disagree & Election) + (Timeout –T) + Coordinator

• When the process with the lowest id in the system detects failure.
• (N-1) processes altogether begin elections, each sending messages to

processes with higher ids.
• i-th highest id process sends (i-1) election messages
• Number of Election messages

= N-1 + N-2 + … + 1 = (N-1)*N/2 = O(N2)

Correctness

• In synchronous system model:
• Set timeout accurately using known bounds on network delays

and processing times.
• Satisfies safety and liveness.

• In asynchronous system model:
• Failure detectors cannot be both accurate and complete.
• Either liveness and safety is violated.

• Because it is related to the consensus problem!

• If we could solve election, then we could solve consensus!
• Elect a process, use its id’s last bit as the consensus decision.

• But (as we will soon see) consensus is impossible in asynchronous
systems, so is election!

Why is Election so hard?

Today’s agenda

• Wrap up leader election
• Chapter 15.3

• Consensus

• Goals:
• Understand the problem of consensus
• How to achieve consensus in a synchronous system
• Difficulty of achieving consensus in an asynchronous system
• Good-enough consensus algorithms for asynchronous systems

Agenda for the next few weeks
• Consensus
• Consensus in synchronous systems

• Chapter 15.4
• Impossibility of consensus in asynchronous systems

• We will not cover the proof in details
• Good enough consensus algorithm for asynchronous systems:

• Paxos made simple, Leslie Lamport, 2001
• Other forms of consensus algorithm

• Raft (log-based consensus)
• Block-chains (distributed consensus)

Agenda for today (and maybe next class)

• Consensus
• Consensus in synchronous systems

• Chapter 15.4
• Impossibility of consensus in asynchronous systems

• We will not cover the proof in details
• A good enough consensus algorithm for asynchronous systems:

• Paxos made simple, Leslie Lamport, 2001
• Other forms of consensus

• Blockchains
• Raft (log-based consensus)

Consensus
• Each process proposes a value.

• All processes must agree on one of the proposed values.

• Examples:
• The generals must agree on the time of attack.
• An object replicated across multiple servers in a distributed data store.
• All servers must agree on the current version of the object.

• Transaction processing on replicated servers
• Must agree on the order in which updates are applied to an object.

• …..

Consensus
• Each process proposes a value.

• All processes must agree on one of the proposed values.

• The final value can be decided based on any criteria:
• Pick minimum of all proposed values.
• Pick maximum of all proposed values.
• Pick the majority (with some deterministic tie-breaking rule).
• Pick the value proposed by the leader.

• All processes must agree on who the leader is.

• If reliable total-order can be achieved, pick the proposed value that gets
delivered first.
• All process must agree on the total order.

• ……

Consensus Problem
• System of N processes (P1, P2, ….., Pn)

• Each process Pi:
• begins in an undecided state.
• proposes value vi.
• at some point during the run of a consensus algorithm, sets a

decision variable di and enters the decided state.

Required Properties

• Termination: Eventually each process sets its decision variable.

• Agreement: The decision value of all correct processes is the same.
• If Pi and Pj are correct and have entered the decided state, then di = dj.

• Integrity: If the correct processes all proposed the same value, then
any correct process in the decided state has chosen that value.
• Specific definition of integrity may vary across sources and systems.

• Safeguard against algorithms that decide on a fixed constant value.

Required Properties

• Termination: Eventually each process sets its decision variable.

• Agreement: The decision value of all correct processes is the same.
• If Pi and Pj are correct and have entered the decided state, then di = dj.

• Integrity: If the correct processes all proposed the same value, then
any correct process in the decided state has chosen that value.

Which of these properties is liveness and which is safety?

Required Properties

• Termination: Eventually each process sets its decision variable.
• Liveness

• Agreement: The decision value of all correct processes is the same.
• If Pi and Pj are correct and have entered the decided state, then di = dj.

• Safety

• Integrity: If the correct processes all proposed the same value, then
any correct process in the decided state has chosen that value.

How do we agree on a value?
• Ring-based leader election

• Send proposed value along with elected message.
• Turnaround time: 3NT worst case and 2NT best case (without failures).

• T is the time taken to transmit a message on a channel.
• O(NfT) if up to f processes fail during the election run.
• Can we do better?

• Bully algorithm
• Send proposed value along with the coordinator message.
• Turnaround time: 4T	in the worst case without failures.
• More than 4fT if up to f processes fail during the election run.

What’s the best we can do?

Consider the simplest algorithm
• Let’s assume the system is synchronous.

• Use a simple B-multicast:
• All processes B-multicast their proposed value to all other processes.
• Upon receiving all proposed values, pick the minimum.

• Time taken under no failures?
• One message transmission time (T)

• What can go wrong?
• If we consider process failures, is a simple B-multicast enough?

B-multicast is not enough for this

P1

P2 P3

P4

P5

Need R-multicast

{v1,	v2, v3,	v5}

{v1,	v2, v3,	v5}

{v1,	v2, v3,	v5}

{v1,	v2, v3,	v4,	v5}

B-multicast is not enough for this

P1

P2 P3

P4

P5

Need R-multicast

{v1,	v2, v3,	v5}

{v1,	v2, v3,	v5}

{v1,	v2, v3,	v5}

{v1,	v2, v3,	v4,	v5}

B-multicast is not enough for this

P1

P2 P3

P4

P5

Need R-multicast

{v1,	v2, v3,	v4,	v5}

{v1,	v2, v3,	v4,	v5}

{v1,	v2, v3,	v4,	v5}

{v1,	v2, v3,	v4,	v5}

Handling failures
• P4 fails before sending v4 to anyone.
• What should other processes do?
• Detect failure. Timeout!

• Assume proposals are sent at time ‘s’.
• Worst-case skew is 𝜖.
• Maximum message transfer time

(including local processing) is T.
• What should the timeout value be?

P1

P2 P3

P4

P5{v1,	v2, v3,	v5}

{v1,	v2, v3,	v5}

{v1,	v2, v3,	v5} {v1,	v2, v3,	v5}

Handling failures
• Assume proposals are sent at time ‘s’.
• Worst-case skew is 𝜖.
• Maximum message transfer time

(including local processing) is T.
• What should the timeout value be?
• Option 1: 𝜖 +	T

• Pi waits for (𝜖 +	T) time units after
sending its proposal at time ‘s’.

• Any other process must have sent
proposed value before s + 𝜖.

• The proposed value should have
reached Pi by (s + 𝜖 +	T).

• Will this work?

P1

P2 P3

P4

P5{v1,	v2, v3,	v5}

{v1,	v2, v3,	v5}

{v1,	v2, v3,	v5} {v1,	v2, v3,	v5}

Handling failures

P1

P2 P3

P4

P5{v1,	v2, v3,	v5}

{v1,	v2, v3,	v5}

{v1,	v2, v3,	v5} {v1,	v2, v3,	v4,	v5}

• Assume proposals are sent at time ‘s’.
• Worst-case skew is 𝜖.
• Maximum message transfer time

(including local processing) is T.
• What should the timeout value be?
• Option 1: 𝜖 +	T

• Pi waits for (𝜖 +	T) time units after
sending its proposal at time ‘s’.

• Any other process must have sent
proposed value before s + 𝜖.

• The proposed value should have
reached Pi by (s + 𝜖 +	T).

• Will this work?

Handling failures
• Assume proposals are sent at time ‘s’.
• Worst-case skew is 𝜖.
• Maximum message transfer time

(including local processing) is T.
• What should the timeout value be?
• How about 𝜖 +	 2*T?

• Will this work?

P1

P2 P3

P4

P5{v1,	v2, v3,	v5}

{v1,	v2, v3,	v5}

{v1,	v2, v3,	v5} {v1,	v2, v3,	v4,	v5}

Handling failures
• Assume proposals are sent at time ‘s’.
• Worst-case skew is 𝜖.
• Maximum message transfer time

(including local processing) is T.
• What should the timeout value be?
• How about 𝜖 +	 2*T?

• Will this work?

P1

P2 P3

P4

P5{v1,	v2, v3,	v5}

{v1,	v2, v3,	v4,	v5}

{v1,	v2, v3,	v5} {v1,	v2, v3,	v4,	v5}

Handling failures
• Assume proposals are sent at time ‘s’.
• Worst-case skew is 𝜖.
• Maximum message transfer time

(including local processing) is T.
• What should the timeout value be?
• How about 𝜖 +	 3*T?

• Will this work?

P1

P2 P3

P4

P5{v1,	v2, v3,	v5}

{v1,	v2, v3,	v4,	v5}

{v1,	v2, v3,	v5} {v1,	v2, v3,	v4,	v5}

Handling failures
• Assume proposals are sent at time ‘s’.
• Worst-case skew is 𝜖.
• Maximum message transfer time

(including local processing) is T.
• What should the timeout value be?
• How about 𝜖 +	 3*T?

• Will this work?

P1

P2 P3

P4

P5{v1,	v2, v3,	v4,	v5}

{v1,	v2, v3,	v4,	v5}

{v1,	v2, v3,	v5} {v1,	v2, v3,	v4,	v5}

Handling failures
• Assume proposals are sent at time ‘s’.
• Worst-case skew is 𝜖.
• Maximum message transfer time

(including local processing) is T.
• What should the timeout value be?
• Timeout = 𝜖 +	(f+1)*T for up to f

failed process.
P1

P2 P3

P4

P5{v1,	v2, v3,	v4,	v5}

{v1,	v2, v3,	v4,	v5}

{v1,	v2, v3,	v5} {v1,	v2, v3,	v4,	v5}

Also holds for R-multicast from a
single sender.

Round-based algorithm

• For a system with at most f processes crashing
- All processes are synchronized and operate in “rounds” of time.

- One round of time is equivalent to 𝜖 +	T units.
- At each process, the ith round

- starts at local time s + (i -1)*(𝜖 +	T)
- ends at local time s + i*(𝜖 +	T)

- The start or end time of a round in two different processes
differs by at most 𝜖.

- The algorithm proceeds in f+1 rounds.
- Assume communication channels are reliable.

Round-based algorithm
Valuesr

i: the set of proposed values known to Pi at the beginning of
round r.

Initially Values1
i = {vi}

for r = 1 to f+1 do
B-multicast (Values ri – Valuesr-1

i)
// iterate through processes, send each a message
Values r+1

i ßValuesr
i

wait until one round of time expires.
for each vj received in this round

Values r+1
i = Values r+1

i È vj
end

end
di = minimum(Values f+2

i)

Why does this work?
• After f+1 rounds, all non-faulty processes would have received the same set of

values.

• Proof by contradiction.

• Assume that two non-faulty processes, say Pi and Pj , differ in their final set of values (i.e.,
after f+1 rounds)

• Assume that Pi possesses a value v that Pj does not possess.
àPi must have received v in the very last round, else Pi would have sent v to Pj in that

last round
à So, in the last round: a third process, Pk, must have sent v to Pi, but then crashed

before sending v to Pj.
à Similarly, a fourth process sending v in the last-but-one round must have crashed;

otherwise, both Pk and Pj should have received v.
à Implies at least one (unique) crash in each of the preceding rounds.
àThis means a total of f+1 crashes, contradicts our assumption of up to f crashes.

Consensus in synchronous systems

Dolev and Strong proved that for a system with up to f failures (or
faulty processes), at least f+1 rounds of information exchange is

required to reach an agreement.

• Using time-based “rounds” or timeouts may not work.
• Cannot guarantee both completeness and accuracy for failure

detection.
• Cannot differentiate between an extremely slow process and

a failed process.
• Key intuition behind the famous FLP result on the impossibility of

consensus in asynchronous systems.
• Impossibility of Distributed Consensus with One Faulty Process,

Fischer-Lynch-Paterson (FLP), 1985
• Stopped many distributed system designers dead in their tracks.
• A lot of claims of “reliability” vanished overnight.
• (Proof is not in your syllabus – optional self-study)

What about asynchronous systems?

• We cannot “solve” consensus in asynchronous systems.
• We cannot meet both safety and liveness requirements.
• Maybe it is ok to guarantee just one requirement.

• Option 1:
• Let’s set super conservative timeout for a terminating algorithm.
• Safety violated if a process (or the network) is very, very slow.

• Option 2:
• Let’s focus on guaranteeing safety under all possible scenarios.
• If the real situation is not too dire, hopefully the algorithm will

terminate.

What about asynchronous systems?

• Paxos algorithm for consensus in asynchronous systems.
• Most popular consensus-algorithm.
• A lot of systems use it

• Zookeeper (Yahoo!), Google Chubby, and many other companies.
• Not guaranteed to terminate, but never violates safety.

• Next Class!

Paxos Consensus Algorithm

