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Today’s agenda

• Wrap up leader election
• Chapter 15.3

• Consensus



Recap: Leader Election
• In a group of processes, elect a Leader to undertake special tasks

• Let everyone know in the group about this Leader.
• Safety condition:

• During the run of an election, a correct process has either not yet elected 
a leader, or has elected process with best attributes.

• Liveness condition:
• Election run terminates and each process eventually elects someone.   

• Two classical algorithms:
• Ring-based algorithm
• Bully algorithm

• Difficult to ensure both safety and liveness in an asynchronous system under 
failures.
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Bully Algorithm

•When a process wants to initiate an election
• if it knows its id is the highest
• it elects itself as coordinator, then sends a Coordinator message to 

all processes with lower identifiers. Election is completed.
• else 

• it initiates an election by sending an Election message 
• (contd.)



Bully Algorithm (2)

• else it initiates an election by sending an Election message 
• Sends it to only processes that have a higher id than itself.
• if receives no answer within timeout, calls itself leader and sends 

Coordinator message to all lower id processes. Election completed.
• if an answer received however, then there is some non-faulty 

higher process => so, wait for coordinator message. If none 
received after another timeout, start a new election run.

• A process that receives an Election message replies with disagree 

message, and starts its own leader election protocol (unless it has 
already done so).
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Timeout values
• Assume the one-way message transmission time (T) is known.

• First timeout value (when the process that has initiated election waits for the 
first response) 
• Must be set as accurately as possible. 

• If it is too small, a lower id process can declare itself to be the coordinator 
even when a higher id process is alive.

• What should be the first timeout value be, given the above assumption?
• 2T + (processing time) ≈ 2T

• When the second timeout happens (after ‘disagree’ message), election is re-
started. 
• A very small value will lead to extra “Election” messages. 
• A suitable option is to use the worst-case turnaround time. 



Performance Analysis
• Best-case

• Second-highest id detects leader failure 
• Highest remaining id initiates election. 

• Sends (N-2) Coordinator messages
• Turnaround time: 1 message transmission time (T)

• Worst-case: For simplicity, assume no failures after a process calls for election. 
• if any lower id process detects failure and starts election. 
• Turnaround time: 4 message transmission times (4T)
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Analysis
• Best-case

• Second-highest id detects leader failure 
• Highest remaining id initiates election. 

• Sends (N-2) Coordinator messages
• Turnaround time: 1 message transmission time

• Worst-case: For simplicity, assume no failures after a process calls for election. 
• Turnaround time: 4 message transmission times 

• if any lower id process detects failure and starts election. 
• Election + (disagree & Election) + (Timeout –T) + Coordinator

• When the process with the lowest id in the system detects failure.
• (N-1) processes altogether begin elections, each sending messages to 

processes with higher ids.
• i-th highest id process sends (i-1) election messages
• Number of Election messages 

= N-1 + N-2 + … + 1 = (N-1)*N/2 = O(N2)



Correctness 

• In synchronous system model: 
• Set timeout accurately using known bounds on network delays 

and processing times. 
• Satisfies safety and liveness. 

• In asynchronous system model:
• Failure detectors cannot be both accurate and complete.
• Either liveness and safety is violated. 



• Because it is related to the consensus problem! 

• If we could solve election, then we could solve consensus!
• Elect a process, use its id’s last bit as the consensus decision.

• But (as we will soon see) consensus is impossible in asynchronous 
systems, so is election!

Why is Election so hard?



Today’s agenda

• Wrap up leader election
• Chapter 15.3

• Consensus

• Goals:
• Understand the problem of consensus
• How to achieve consensus in a synchronous system
• Difficulty of achieving consensus in an asynchronous system
• Good-enough consensus algorithms for asynchronous systems



Agenda for the next few weeks
• Consensus
• Consensus in synchronous systems

• Chapter 15.4
• Impossibility of consensus in asynchronous systems

• We will not cover the proof in details
• Good enough consensus algorithm for asynchronous systems: 

• Paxos made simple, Leslie Lamport, 2001
• Other forms of consensus algorithm 

• Raft (log-based consensus)
• Block-chains (distributed consensus)



Agenda for today (and maybe next class)

• Consensus
• Consensus in synchronous systems

• Chapter 15.4
• Impossibility of consensus in asynchronous systems

• We will not cover the proof in details
• A good enough consensus algorithm for asynchronous systems: 

• Paxos made simple, Leslie Lamport, 2001
• Other forms of consensus 

• Blockchains
• Raft (log-based consensus)



Consensus
• Each process proposes a value.

• All processes must agree on one of the proposed values.

• Examples: 
• The generals must agree on the time of attack. 
• An object replicated across multiple servers in a distributed data store.
• All servers must agree on the current version of the object. 

• Transaction processing on replicated servers
• Must agree on the order in which updates are applied to an object. 

• …..



Consensus
• Each process proposes a value.

• All processes must agree on one of the proposed values.

• The final value can be decided based on any criteria: 
• Pick minimum of all proposed values.
• Pick maximum of all proposed values.
• Pick the majority (with some deterministic tie-breaking rule).
• Pick the value proposed by the leader.

• All processes must agree on who the leader is.

• If reliable total-order can be achieved, pick the proposed value that gets 
delivered first.
• All process must agree on the total order. 

• ……



Consensus Problem
• System of N processes (P1, P2, ….., Pn)

• Each process Pi:
• begins in an undecided state.
• proposes value vi. 
• at some point during the run of a consensus algorithm, sets a 

decision variable di and enters the decided state.



Required Properties

• Termination: Eventually each process sets its decision variable.

• Agreement: The decision value of all correct processes is the same.
• If Pi and Pj are correct and have entered the decided state, then di = dj.

• Integrity: If the correct processes all proposed the same value, then 
any correct process in the decided state has chosen that value. 
• Specific definition of integrity may vary across sources and systems.

• Safeguard against algorithms that decide on a fixed constant value. 



Required Properties
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Which of these properties is liveness and which is safety? 



Required Properties

• Termination: Eventually each process sets its decision variable.
• Liveness

• Agreement: The decision value of all correct processes is the same.
• If Pi and Pj are correct and have entered the decided state, then di = dj.

• Safety

• Integrity: If the correct processes all proposed the same value, then 
any correct process in the decided state has chosen that value. 



How do we agree on a value?
• Ring-based leader election

• Send proposed value along with elected message. 
• Turnaround time: 3NT worst case and 2NT best case (without failures).

• T is the time taken to transmit a message on a channel. 
• O(NfT) if up to f processes fail during the election run.
• Can we do better?

• Bully algorithm 
• Send proposed value along with the coordinator message. 
• Turnaround time: 4T	in the worst case without failures. 
• More than 4fT if up to f processes fail during the election run.  

What’s the best we can do? 



Consider the simplest algorithm
• Let’s assume the system is synchronous.

• Use a simple B-multicast:
• All processes B-multicast their proposed value to all other processes.
• Upon receiving all proposed values, pick the minimum. 

• Time taken under no failures? 
• One message transmission time (T) 

• What can go wrong? 
• If we consider process failures, is a simple B-multicast enough?



B-multicast is not enough for this
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Handling failures
• P4 fails before sending v4 to anyone. 
• What should other processes do?
• Detect failure. Timeout! 

• Assume proposals are sent at time ‘s’.
• Worst-case skew is 𝜖.
• Maximum message transfer time 

(including local processing) is T. 
• What should the timeout value be? 
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Handling failures
• Assume proposals are sent at time ‘s’.
• Worst-case skew is 𝜖.
• Maximum message transfer time 

(including local processing) is T.
• What should the timeout value be?
• Option 1: 𝜖 +	T

• Pi waits for (𝜖 +	T) time units after 
sending its proposal at time ‘s’.

• Any other process must have sent 
proposed value before s + 𝜖. 

• The proposed value should have 
reached Pi by (s + 𝜖 +	T). 

• Will this work?
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Handling failures
• Assume proposals are sent at time ‘s’.
• Worst-case skew is 𝜖.
• Maximum message transfer time 

(including local processing) is T.
• What should the timeout value be?
• How about 𝜖 +	 2*T?

• Will this work?
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Handling failures
• Assume proposals are sent at time ‘s’.
• Worst-case skew is 𝜖.
• Maximum message transfer time 

(including local processing) is T.
• What should the timeout value be?
• Timeout = 𝜖 +	(f+1)*T for up to f 

failed process. 
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Also holds for R-multicast from a 
single sender.  



Round-based algorithm

• For a system with at most f processes crashing
- All processes are synchronized and operate in “rounds” of time.

- One round of time is equivalent to 𝜖 +	T units. 
- At each process, the ith round 

- starts at local time s + (i -1)*(𝜖 +	T) 
- ends at local time s + i*(𝜖 +	T) 

- The start or end time of a round in two different processes 
differs by at most 𝜖. 

- The algorithm proceeds in f+1 rounds.
- Assume communication channels are reliable. 



Round-based algorithm
Valuesr

i: the set of proposed values known to Pi at the beginning of     
round r.

Initially Values1
i = {vi}

for r = 1 to f+1 do 
B-multicast (Values ri – Valuesr-1

i) 
// iterate through processes, send each a message
Values r+1

i ßValuesr
i

wait until one round of time expires. 
for each vj received in this round

Values r+1
i = Values r+1

i È vj
end

end
di = minimum(Values f+2

i)



Why does this work?
• After f+1 rounds, all non-faulty processes would have received the same set of  

values. 

• Proof by contradiction.

• Assume that two non-faulty processes, say Pi and Pj , differ in their final set of values (i.e., 
after f+1 rounds)

• Assume that Pi possesses a value v that Pj does not possess.
àPi must have received v in the very last round, else Pi would have sent v to Pj in that 

last round 
à So, in the last round: a third process, Pk, must have sent v to Pi, but then crashed 

before sending v to Pj.
à Similarly, a fourth process sending v in the last-but-one round must have crashed; 

otherwise, both Pk and Pj should have received v.
à Implies at least one (unique) crash in each of the preceding rounds. 
àThis means a total of f+1 crashes, contradicts our assumption of up to f crashes. 



Consensus in synchronous systems

Dolev and Strong proved that for a system with up to f failures (or 
faulty processes), at least f+1 rounds of information exchange is 

required to reach an agreement. 



• Using time-based “rounds” or timeouts may not work.
• Cannot guarantee both completeness and accuracy for failure 

detection.
• Cannot differentiate between an extremely slow process and 

a failed process. 
• Key intuition behind the famous FLP result on the impossibility of 

consensus in asynchronous systems. 
• Impossibility of Distributed Consensus with One Faulty Process, 

Fischer-Lynch-Paterson (FLP), 1985
• Stopped many distributed system designers dead in their tracks.
• A lot of claims of “reliability” vanished overnight.
• (Proof is not in your syllabus – optional self-study)

What about asynchronous systems?



• We cannot “solve” consensus in asynchronous systems.
• We cannot meet both safety and liveness requirements.
• Maybe it is ok to guarantee just one requirement.

• Option 1: 
• Let’s set super conservative timeout for a terminating algorithm.
• Safety violated if a process (or the network) is very, very slow. 

• Option 2: 
• Let’s focus on guaranteeing safety under all possible scenarios.
• If the real situation is not too dire, hopefully the algorithm will 

terminate. 

What about asynchronous systems?



• Paxos algorithm for consensus in asynchronous systems. 
• Most popular consensus-algorithm.
• A lot of systems use it

• Zookeeper (Yahoo!), Google Chubby, and many other companies.
• Not guaranteed to terminate, but never violates safety. 

• Next Class!

Paxos Consensus Algorithm


