Distributed Systems

CS425/ECE428

Feb 27 2023

Instructor: Radhika Mittal

Acknowledgements for some of the materials: Indy Gupta

Today’s agenda

* Wrap up leader election
* Chapter 15.3

* Consensus

Recap: Leader Election

* In a group of processes, elect a Leader to undertake special tasks

* Let everyone know In the group about this Leader.

Safety condition:

* During the run of an election, a correct process has either not yet elected
a leader; or has elected process with best attributes.

Liveness condition:
* Election run terminates and each process eventually elects someone.

Two classical algorithms:
* Ring-based algorithm
* Bully algorithm

Difficult to ensure both safety and liveness in an asynchronous system under
fallures.

Recap: Leader Election

* In a group of processes, elect a Leader to undertake special tasks

* Let everyone know In the group about this Leader.

Safety condition:

* During the run of an election, a correct process has either not yet elected
a leader; or has elected process with best attributes.

Liveness condition:
* Election run terminates and each process eventually elects someone.

Two classical algorithms:
* Ring-based algorithm
* Bully algorithm

Difficult to ensure both safety and liveness in an asynchronous system under
fallures.

Bully Algorithm

* When a process wants to Initiate an election

* if it knows its id is the highest

* it elects itself as coordinator, then sends a Coordinator message to

all processes with lower identifiers. Election is completed.
* else
* it initiates an election by sending an Election message

* (contd.)

Bully Algorithm (2)

* else it initiates an election by sending an Election message
* Sends it to only processes that have a higher id than itself.

* if receives no answer within timeout, calls itself leader and sends

Coordinator message to all lower id processes. Election completed.

* if an answer received however, then there is some non-faulty
higher process => so, wait for coordinator message. If none

received after another timeout, start a new election run.

* A process that receives an Election message replies with disagree
message, and starts its own leader election protocol (unless it has

already done so).

Bully Algorithm (2)

* else it initiates an election by sending an Election message
* Sends it to only processes that have a higher id than itself.

* if recelives no answer within - calls itself leader and sends

Coordinator message to all lower id processes. Election completed.

* if an answer received however, then there is some non-faulty
higher process => so, wait for coordinator message. If none

received after another start a new election run.

* A process that receives an Election message replies with disagree
message, and starts its own leader election protocol (unless it has

already done so).

Timeout values

* Assume the one-way message transmission time (T) is known.

* First timeout value (when the process that has initiated election waits for the
first response)

* Must be set as accurately as possible.

 Ifitis too small,a lower id process can declare itself to be the coordinator
even when a higher id process is alive.

* What should be the first timeout value be, given the above assumption?
e 2T + (processing time) = 2T

* When the second timeout happens (after ‘disagree’ message), election is re-
started.

* A very small value will lead to extra “Election” messages.
* A suitable option is to use the worst-case turnaround time.

Performance Analysis

* Best-case
* Second-highest id detects leader failure
* Highest remaining id initiates election.
* Sends (N-2) Coordinator messages
* Turnaround time: | message transmission time (T)

* Worst-case: For simplicity, assume no failures after a process calls for election.
* if any lower id process detects failure and starts election.
* Turnaround time: 4 message transmission times (471)

Bully Algorithm: Example

P2 initiates election after detecting P5’s failure.

-

®
Q ion
X

1. P2 initiates election

Elgction

r

disagre

i disagree

Election

Election
Election

2. P2 receives "replies

3. P3 & P4 initiate election

5. P4 receives no
reply
P4 waits for T more time

after P2 receives its
“disagree” message.

5. P4 announces itself

-

Analysis

* Best-case
* Second-highest id detects leader failure
* Highest remaining id initiates election.
* Sends (N-2) Coordinator messages
* Turnaround time: | message transmission time

* Worst-case: For simplicity, assume no failures after a process calls for election.
* Turnaround time: 4 message transmission times
* if any lower id process detects faillure and starts election.

* Election + (disagree & Election) + (Timeout —T) + Coordinator
* When the process with the lowest id in the system detects failure.

* (N-1) processes altogether begin elections, each sending messages to
processes with higher ids.

* i-th highest id process sends (i-1) election messages

* Number of Election messages
=N-1 + N2+ ...+ 1 =(N-D*N/2 = O(N?)

Correctness

* In synchronous system model.

* Set timeout accurately using known bounds on network delays
and processing times.

* Satisfies safety and liveness.

* In asynchronous system model:
* Failure detectors cannot be both accurate and complete.
* Either liveness and safety Is violated.

Why is Election so hard!?

* Because It is related to the consensus problem!

* If we could solve election, then we could solve consensus!
* Elect a process, use its id's last bit as the consensus decision.

* But (as we will soon see) consensus is impossible in asynchronous
systems, so Is election!

Today’s agenda

* Consensus

* Goals:
* Understand the problem of consensus
* How to achieve consensus In a synchronous system
* Difficulty of achieving consensus in an asynchronous system
* Good-enough consensus algorithms for asynchronous systems

Agenda for the next few weeks

* Consensus
* Consensus In synchronous systems
* Chapter 5.4

* Impossibility of consensus in asynchronous systems
* We will not cover the proof in details

* Good enough consensus algorithm for asynchronous systems:
* Paxos made simple, Leslie Lamport, 2001

* Other forms of consensus algorithm
* Raft (log-based consensus)
* Block-chains (distributed consensus)

Agenda for today (and maybe next class)

* Consensus

* Consensus In synchronous systems
* Chapter 5.4
* Impossibility of consensus in asynchronous systems

* A good enough consensus algorithm for asynchronous systems:
* Paxos made simple, Leslie Lamport, 2001

Consensus

* Each process proposes a value.
* All processes must agree on one of the proposed values.

* Examples:
* The generals must agree on the time of attack
* An object replicated across multiple servers in a distributed data store.
* All servers must agree on the current version of the object.
* Transaction processing on replicated servers

* Must agree on the order in which updates are applied to an object.

Consensus

* Each process proposes a value.
* All processes must agree on one of the proposed values.

* The final value can be decided based on any criteria:

* Pick minimum of all proposed values.

* Pick maximum of all proposed values.

Pick the majority (with some deterministic tie-breaking rule).

Pick the value proposed by the leader.

* All processes must agree on who the leader is.

If reliable total-order can be achieved, pick the proposed value that gets

delivered first.

* All process must agree on the total order.

Consensus Problem

* System of N processes (P, P, ..., P.)

* Fach process P:
* begins In an undecided state.
* proposes value v..

* at some point during the run of a consensus algorithm, sets a

decision variable d. and enters the decided state.

Required Properties

* Termination: Eventually each process sets its decision variable.

* Agreement: The decision value of all correct processes Is the same.

* If P,and P, are correct and have entered the decided state, then d; = d,

* Integrity: If the correct processes all proposed the same value, then

any correct process In the decided state has chosen that value.
* Specific definition of integrity may vary across sources and systems.

* Safeguard against algorithms that decide on a fixed constant value.

Required Properties

* Termination: Eventually each process sets its decision variable.

* Agreement: The decision value of all correct processes Is the same.

* If P,and P, are correct and have entered the decided state, then d; = d,

Which of these properties is liveness and which is safety!?

Required Properties

* Termination: Eventually each process sets its decision variable.

* | jveness

* Agreement: The decision value of all correct processes Is the same.

* If Prand P; are correct and have entered the decided state, then d; = d;

* Safety

How do we agree on a value!

* Ring-based leader election
* Send proposed value along with elected message.
* Turnaround time: 3SNT worst case and 2NT best case (without failures).
* T Is the time taken to transmit a message on a channel.
* O(NfT) If up to f processes fail during the election run.

e Can we do better?

* Bully algorithm
* Send proposed value along with the coordinator message.
* Turnaround time: 4T in the worst case without failures.

* More than 4fT if up to f processes fail during the election run.

What's the best we can do?

Consider the simplest algorithm

* Let’s assume the system is synchronous.

* Use a simple B-multicast:
* All processes B-multicast their proposed value to all other processes.

* Upon receiving all proposed values, pick the minimum.

 Time taken under no failures?

* One message transmission time (T)

* What can go wrong!

* |f we consider process failures, is a simple B-multicast enough!?

B-multicast is not enough for this

{V1; Vy V3, V5}

Need R-multicast

B-multicast is not enough for this

{v, v, v3, V5}
{Vi, vy V3, Vy, Vs}

AY

Need R-multicast

B-multicast is not enough for this

{vy, V) V3, Vy, Vs}
{Vi, vy V3, Vy, Vs}

{vy, V) V3, Vy, Vs}

{Vl; Vy V3, Vy, V5}

Need R-multicast

Handling failures

P4 fails before sending v, to anyone.

{vy, Vy V3, Vs}

What should other processes do?

Detect failure. Timeout!

o
W
°

Assume proposals are sent at time 's..

Worst-case skew Is €.

a Maximum message transfer time
(including local processing) isT.

* \What should the timeout value be?

Handling failures

Assume proposals are sent at time''s..

{vy, vy, V3, Vs} « Worst-case skew is €.

{V1; Vy V3, V5}

e * Maximum message transfer time
v (including local processing) isT.

P3
/‘//‘/ What should the timeout value be!
[

P1

_ Option [€ + T
a * Piwaits for (e + T) time units after
sending its proposal at time''s’.

{vi, vy V3, Vs} e * Any other process must have sent

proposed value before s + €.
{V1, Vy V3, V5}

* The proposed value should have
reached Piby (s + €+ T).

o Will this work?

Handling failures

Assume proposals are sent at time''s..

vy o, va Vsl gy V, Vs, vy s} © VVorst-case skew is €.

Maximum message transfer time

(including local processing) is T.

What should the timeout value be!

Option [€ + T

* Piwaits for (e + T) time units after
sending its proposal at time''s’.
* Any other process must have sent

proposed value before s + €.

* The proposed value should have
reached Piby (s + €+ T).

o Will this work?

Handling failures

V., V) Va, V) * Assume proposals are sent at time''s’.
17 V2, V3, V5 {vl,vz’v3,v4,v5}

 Worst-case skew Is €.

* Maximum message transfer time

(including local processing) isT.
* What should the timeout value be!

e How about € + 2*T¢
o Will this work?

Handling failures

* Assume proposals are sent at time''s’.
* Worst-case skew Is €.

'
\\/) (@ * Maximum message transfer time

(including local processing) isT.

* \What should the timeout value be?

5 P1) @ e How about € + 2*T?
<] | . Will this work?

Handling failures

V., V) Va, V) * Assume proposals are sent at time''s’.
17 V2, V3, V5 {v,, Vy V3, Vy, Vc}

* Worst-case skew Is €.
iz//) (@ * Maximum message transfer time

(including local processing) isT.

\ * What should the timeout value be?
Gl) ~' e How about € + 3*T?
<] | . Will this work?

/

{vy, Vy V3, Vs} @

{V]_I Vz' V3, Vg, V5}

Handling failures

* Assume proposals are sent at time''s’.
* Worst-case skew Is €.

'
\\/) (@ * Maximum message transfer time

(including local processing) isT.

\ * What should the timeout value be?
Gl) ~' e How about € + 3*T?
3 . Will this work?

{vi, vy V3, Vy, Vs}

{vi, vy V3, vy, Vs}

Handling failures

V., V) Va, V) * Assume proposals are sent at time''s’.
17 V2, V3, V5 {v,, Vy V3, Vy, Vc}

* Worst-case skew Is €.
iz//) (@ * Maximum message transfer time

(including local processing) isT.

\ * What should the timeout value be!
Gl) : * Timeout = € + (f+1)*T for up to f
<3 falled process.

{vi, vy V3, Vy, Vs}
Also holds for R-multicast from a
{vi, vy V3, vy, Vs} single sender.

Round-based algorithm

* For a system with at most f processes crashing
- All processes are synchronized and operate In “rounds’ of time.
- One round of time Is equivalent to € + T units.
- At each process, the i round
- starts at local tme s + (1 -1)*(e + T)
- ends at local time s + i*(e + T)

- The start or end time of a round in two different processes
differs by at most €.

- The algorithm proceeds in f+1 rounds.
- Assume communication channels are reliable.

Round-based algorithm

Values": the set of proposed values known to P. at the beginning of
round r.

Initially Values', = {v}
forr=11to f+| do
B-multicast (Values " — Values™)
// rterate through processes, send each a message
Values ™! € Values"
wait until one round of time expires.
for each v, received in this round
Values ™!, = Values ™, U v,

end

end
d; = minimum(Values 2)

Why does this work?

After f+1 rounds, all non-faulty processes would have received the same set of
values.

Proof by contradiction.

Assume that two non-faulty processes, say P, and P, differ in their final set of values (i.e,,
after f+1 rounds)
Assume that P; possesses a value v that P; does not possess.

=P, must have received v in the very last round, else P, would have sent v to Pin that
last round

=> S0, in the last round: a third process, P,, must have sent v to P, but then crashed
before sending v to P

= Similarly, a fourth process sending v in the last-but-one round must have crashed;
otherwise, both P, and P, should have received v.

—> Implies at least one (unique) crash in each of the preceding rounds.

—>This means a total of f+1 crashes, contradicts our assumption of up to f crashes.

Consensus in synchronous systems

Dolev and Strong proved that for a system with up to f failures (or
faulty processes), at least f+/ rounds of information exchange is
required to reach an agreement.

What about asynchronous systems?

* Using time-based “rounds” or timeouts may not work.

* Cannot guarantee both completeness and accuracy for failure

detection.

* Cannot differentiate between an extremely slow process and
a falled process.

* Key intuition behind the famous FLP result on the impossibility of

consensus In asynchronous systems.

* Impossibility of Distributed Consensus with One Faulty Process,
Fischer-Lynch-Paterson (FLP), | 985

* Stopped many distributed system designers dead in their tracks.
* A lot of claims of “reliability” vanished overnight.

* (Proof is not in your syllabus — optional self-study)

What about asynchronous systems?

* We cannot “solve’ consensus in asynchronous systems.
* We cannot meet both safety and liveness requirements.
* Maybe It Is ok to guarantee just one requirement.
* Option |:
* Let’s set super conservative timeout for a terminating algorithm.
* Safety violated If a process (or the network) is very, very slow.
* Option 2:
* Let's focus on guaranteeing safety under all possible scenarios.

* If the real situation Is not too dire, hopefully the algorithm will

terminate.

Paxos Consensus Algorithm

* Paxos algorithm for consensus in asynchronous systems.

* Most popular consensus-algorithm.
* A lot of systems use It
* Zookeeper (Yahoo!), Google Chubby, and many other companies.

* Not guaranteed to terminate, but never violates safety.
* Next Class!

