
Distributed Systems

CS425/ECE428

April 30 2021

Instructor : Radhika Mittal

Acknowledgements for the materials: Indy Gupta

Today’s focus

• Brief overview of key-value stores

• Distributed Hash Tables
• Peer-to-peer protocol for efficient insertion and retrieval of key-value

pairs.

• Key-value stores in the cloud
• How to run large-scale distributed computations over key-value

stores?
• Map-Reduce Programming Abstraction

• How to design a large-scale distributed key-value store?
• Case-study: Facebook’s Cassandra

Distributed datastores

• Distributed datastores
• Service for managing distributed storage.

• Distributed NoSQL key-value stores
• BigTable by Google
• HBase open-sourced by Yahoo and used by Hadoop.
• DynamoDB by Amazon
• Cassandra by Facebook
• Voldemort by LinkedIn
• MongoDB,
• …

• Spanner is not a NoSQL datastore. It’s more like a distributed relational
database.

CAP Tradeoff

• Starting point for NoSQL
Revolution

• A distributed storage
system can achieve at
most two of C, A, and P.

• When partition-tolerance
is important, you have to
choose between
consistency and availability

Consistency

Partition-tolerance Availability

Conventional
RDBMSs
(non-replicated)

Cassandra, RIAK,
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner

Case Study: Cassandra

Data Partitioning and Replication
• Partitioner: identifies primary replica for a key

• hash-based or range based.

• Replication in multi-DC environments
• replicate across datacenters.
• replicate across different racks within a datacenter.

• Writes:
• Client send writes to the coordinator.
• Coordinator sends query to all replicas.
• Waits for X replicas to respond before returning acknowledgement to

client.
• X determines consistency level. To be discussed.

• Hinted handoffs to ensure writes are eventually written to all replicas.

Writes at a replica node
On receiving a write
1. Log it in disk commit log (for failure recovery)
2. Make changes to appropriate memtables

• Memtable = In-memory representation of multiple key-value pairs
• Cache that can be searched by key
• Write-back cache as opposed to write-through

3. Later, when memtable is full or old, flush to disk
• Data File: An SSTable (Sorted String Table) – list of key-value

pairs, sorted by key
• Index file: An SSTable of (key, position in data sstable) pairs
• And a Bloom filter (for efficient search) – next slide.

Bloom Filter
• Compact way of representing a set of items.
• Checking for existence in set is cheap.
• Some probability of false positives: an item not in set may check true as

being in set.
• No false negatives.

Large Bit Map
0
1
2
3

6
9

127

111

Key-K
Hash1

Hash2

Hashm

On insert, set all hashed bits.

On check-if-present,
return true if all hashed bits set.
• False positives

False positive rate low
• m=4 hash functions
• 100 items
• 3200 bits
• FP rate = 0.02%

.

.

Compaction

• Data updates accumulate over time and over
multiple SSTables.

• Need to be compacted.
• The process of compaction merges SSTables, i.e., by

merging updates for a key.
• Run periodically and locally at each server.

Deletes

Delete: don’t delete item right away
• Write a tombstone for the key.
• Eventually, when compaction encounters tombstone it will

delete item

Reads
• Coordinator contacts X replicas (e.g., in same rack)

• Coordinator sends read to replicas that have responded quickest in
past.

• When X replicas respond, coordinator returns the latest-
timestamped value from among those X.

• X = based on consistency spectrum (more later).
• Coordinator also fetches value from other replicas

• Checks consistency in the background, initiating a read repair if any
two values are different.

• This mechanism seeks to eventually bring all replicas up to date.
• At a replica

• Read looks at Memtables first, and then SSTables.
• A row may be split across multiple SSTables => reads need to

touch multiple SSTables => reads slower than writes (but still fast).

Cross-DC coordination

• Replicas may span multiple datacenters.
• Per-DC coordinator elected to coordinate with other

DCs.
• Election done via Zookeeper which runs a Bully

algorithm variant.

Membership

• Any server in cluster could be the leader.
• So every server needs to maintain a list of all the

other servers that are currently in the cluster.
• List needs to be updated automatically as servers

join, leave, and fail.

Cluster Membership

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

•Nodes periodically gossip their membership list

•On receipt, the local membership list is updated, as shown

•If any heartbeat older than Tfail, node is marked as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

Cassandra uses gossip-based cluster membership

(old)

(updated)

Consistency Spectrum

Strong Eventual
More consistency

Faster reads and writes

Eventual Consistency

• Cassandra offers Eventual Consistency
• If writes to a key stop, all replicas of key will converge.
• Originally from Amazon’s Dynamo and LinkedIn’s

Voldemort systems

Strong
(e.g., Sequential)Eventual

More consistency

Faster reads and writes

Cassandra write and read recap
• Writes

• Client sends write request to a coordinator.
• Coordinator writes to all replicas.
• Waits for X replicas to respond before returning acknowledgement to the

client.
• Hinted handoff: if a replica is down, it receives the write request once it

comes back up.

• Reads
• Client sends read request to a coordinator.
• Coordinator contacts X replicas, and returns the latest returned value.
• Read repair : After returning a response, coordinator continues with fetching

values from other replicas, and initiates repairs to outdated values.

Consistency levels: value of X

• Cassandra has consistency levels.
• Client is allowed to choose a consistency level for each

operation (read/write)
• ANY: any server (may not be replica)

• Fastest: coordinator caches write and replies quickly to client
• ALL: all replicas

• Ensures strong consistency, but slowest
• ONE: at least one replica

• Faster than ALL, but cannot tolerate a failure
• QUORUM: quorum across all replicas in all datacenters (DCs)

Quorums?
In a nutshell:
• Quorum = (typically) majority
• Any two quorums intersect

• Client 1 does a write in red
quorum

• Then client 2 does read in blue
quorum

• At least one server in blue quorum
returns latest write

• Quorums faster than ALL, but still
ensure strong consistency

• Several key-value/NoSQL stores (e.g.,
Riak and Cassandra) use quorums.

Five replicas of a key-value pair

A quorum
A second quorum

A server

Read Quorums

• Reads
• Client specifies value of R (≤ N = total number of replicas

of that key).
• R = read consistency level.
• Coordinator waits for R replicas to respond before

sending result to client.
• In background, coordinator checks for consistency of

remaining (N-R) replicas, and initiates read repair if
needed.

Write Quorums

• Client specifies W (≤ N)
• W = write consistency level.
• Client writes new value to W replicas and returns

when it hears back from all.
• Default strategy.

Quorums in Detail (Contd.)
• R = read replica count, W = write replica count
• Necessary conditions for consistency:

1. W+R > N
• Write and read intersect at a replica. Read returns latest write.

2. W > N/2
• Two conflicting writes on a data item don’t occur at the same time.

• Select values based on application
• (W=N, R=1):

• great for read-heavy workloads
• (W=1, R=N):

• great for write-heavy workloads with no conflicting writes.
• (W=N/2+1, R=N/2+1):

• great for write-heavy workloads with potential for write conflicts.
• (W=1, R=1):

• very few writes and reads / high availability requirement.

Cassandra Consistency Levels

• Client is allowed to choose a consistency level for each
operation (read/write)

• ANY: any server (may not be replica)
• Fastest: coordinator may cache write and reply quickly to client

• ALL: all replicas
• Slowest, but ensures strong consistency

• ONE: at least one replica
• Faster than ALL, and ensures durability without failures

• QUORUM: quorum across all replicas in all datacenters (DCs)
• Global consistency, but still fast

• EACH_QUORUM: quorum in every DC
• Lets each DC do its own quorum: supports hierarchical replies

• LOCAL_QUORUM: quorum in coordinator’s DC
• Faster: only waits for quorum in first DC client contacts

Eventual Consistency
• Sources of inconsistency:

• Quorum condition not satisfied R + W < N.
• R and W are chosen as such.
• when write returns before W replicas respond.

• Sloppy quorum: when value stored elsewhere if intended replica is down,
and later moved to the replica when it is up again.

• When local quorum is chosen instead of global quorum.
• Hinted-handoff and read repair help in achieving eventual consistency.

• If all writes (to a key) stop, then all its values (replicas) will converge
eventually.

• May still return stale values to clients (e.g., if many back-to-back writes).
• But works well when there a few periods of low writes – system converges

quickly.

Cassandra vs. RDBMS

• MySQL is one of the most popular RDBMS (and has
been for a while)

• On > 50 GB data
• MySQL

• Writes 300 ms avg
• Reads 350 ms avg

• Cassandra
• Writes 0.12 ms avg
• Reads 15 ms avg

• Orders of magnitude faster.

Other similar NoSQL stores

• Amazon’s DynamoDB
• Cassandra’s data partitioning, replication, and eventual consistency

strategies inspired from Dynamo.
• Uses sloppy quorum as the default mechanism for eventual

consistency with availability.
• Uses vector clocks to capture causality between different versions

of an object.
• Dynamo: Amazon’s Highly Available Key-value Store, SOSP’2007.

• LinkedIn’s Voldemort
• Inspired from DynamoDB.

• …..

Is it a good idea to trade-off
consistency for availability?

A recent tweet by a distributed systems researcher:

Summary

• CAP theorem: cannot only achieve 2 out of 3 among
consistency, availability, and partition-tolerance.

• Partition-tolerance is required in distributed datastores.
• Choose between consistency and availability.

• Many modern distributed NoSQL key-value stores (e.g.
Cassandra) choose availability, providing only eventual
consistency.

