Mutual Exclusion

Material derived from slides by I. Gupta, M. Harandi, J. Hou, S. Mitra, K. Nahrstedt, N. Vaidya
Why Mutual Exclusion?

Bank's Servers in the Cloud: Think of two simultaneous deposits of $10,000 into your bank account, each from one ATM.

- Both ATMs read initial amount of $1000 concurrently from the bank's cloud server
- Both ATMs add $10,000 to this amount (locally at the ATM)
- Both write the final amount to the server
- What's wrong?

The ATMs need mutually exclusive access to your account entry at the server (or, to executing the code that modifies the account entry)
Today

Mutual exclusion
- Decentralized algorithms:
 - Token ring
 - Ricart-Agrawala
 - Maekawa

Leader election

HW2 out today, due Feb 22
Midterm on Feb 23

- conflict by Monday!
Mutual Exclusion

Critical section problem: Piece of code (at all clients) for which we need to ensure there is at most one client executing it at any point of time.

Solutions:
- Semaphores, mutexes, etc. in single-node operating systems
- Message-passing-based protocols in distributed systems:
 - enter() the critical section
 - AccessResource() in the critical section
 - exit() the critical section

Distributed mutual exclusion requirements:
- **Safety** – At most one process may execute in CS at any time
- **Liveness** – Every request for a CS is eventually granted
- **Ordering** (desirable) – Requests are granted in the order they were made (avoid livelock)
To synchronize access of multiple threads to common data structures

Allows two operations:

- **lock()**

 while true: // each iteration atomic

 if lock not in use:

 - label lock in use

 - break

- **unlock()**

 label lock not in use
How are mutexes used?

mutex L = UNLOCKED;

ATM1:
lock(L); // enter
 // critical section
obtain bank amount;
add in deposit;
update bank amount;
unlock(L); // exit

ATM2
lock(L); // enter
 // critical section
obtain bank amount;
add in deposit;
update bank amount;
unlock(L); // exit

One Use: Mutual Exclusion – Bank ATM example
Distributed Mutual Exclusion: Performance Evaluation Criteria

Bandwidth: the total number of messages sent in each entry and exit operation.

Client delay: the delay incurred by a process at each entry and exit operation (when no other process is in, or waiting)

- (We will prefer mostly the entry operation.)

Synchronization delay: the time interval between one process exiting the critical section and the next process entering it (when there is only one process waiting)

These translate into throughput — the rate at which the processes can access the critical section, i.e., \(x \) processes per second.

(These definitions more correct than the ones in the textbook)
Assumptions/System Model

For all the algorithms studied, we make the following assumptions:
- Each pair of processes is connected by reliable channels (such as TCP).
- Messages are eventually delivered to recipients' input buffer in FIFO order.
- Processes do not fail (why?)
1. Centralized Control of Mutual Exclusion

Central coordinator arbitrates CS access
- elected (next lecture)

Upon receiving request message from p
- If not in critical section, send grant to p
 - Mark self as in CS
- Else, add p’s request to the queue

Upon receiving release message
- Send grant message to first process in the queue
 - If queue empty
 - Mark self as not in CS
 - Else

Client enter CS
- Send request message
- Wait for grant message

Client exit CS
- Send release message

Guarantees
- Safety
- Liveness
 - Ordering

Bandwidth: 2 msg / enter, 1 msg / exit

Client delay: 1 RTT (request/grant)

Synchronization delay: 2 one-way latencies
Server code:

Lock L;

handle_message() {
 if (message = request) {
 lock(L);
 send(grant)
 } else
 if (message = release) {
 unlock(L);
 }
}
2. Token Ring Approach

Processes are organized in a logical ring: pi has a communication channel to pi+1 mod (n).

Operations:
- Only the process holding the token can enter the CS.
- To enter the critical section, wait passively for the token. When in CS, hold on to the token.
- To exit the CS, the process sends the token onto its neighbor.
- If a process does not want to enter the CS when it receives the token, it forwards the token to the next neighbor.
2. Token Ring Approach

Features:

- Safety & liveness are guaranteed, but ordering is not.
- Bandwidth: 1 message per exit
- Client delay: 0 to N message transmissions.
- Synchronization delay between one process's exit from the CS and the next process's entry is between 1 and N-1 message transmissions.
Multicast-based solution

state = \{ \text{wanted, held, free} \}

enter:
\begin{itemize}
 \item state \rightarrow \text{wanted}
 \item multicast(“request”) to all other nodes
 \item wait for reply from each node
 \item state \rightarrow \text{held}
\end{itemize}

exit:
\begin{itemize}
 \item state \rightarrow \text{free}
 \item reply to all processes in queue
\end{itemize}

When receiving a request message from \(p_i \):
\begin{itemize}
 \item If state = \text{free}:
 \begin{itemize}
 \item Send reply to \(p_i \)
 \end{itemize}
 \item Else:
 \begin{itemize}
 \item Add \(p_i \) to queue
 \end{itemize}
\end{itemize}

Properties:
\begin{itemize}
 \item Safety?
 \item Liveness?
\end{itemize}
Ricart-Agrawala

state = { wanted, held, free }

enter:
- state = wanted
- multicast("request",T,p_i) to all other nodes
 - T: Lamport timestamp, used to break cycles
- wait for reply from each node
- state = held

exit:
- state = free
- reply to all processes in queue

When receiving a request message from p_i with timestamp T

If state = free OR state = wanted and T_i,p_i < T_j,p_j
- Send reply to p_i
else
- Add p_i to queue
Analysis: Ricart & Agrawala

Safety, liveness, and ordering (causal) are guaranteed

- Why?

Bandwidth: $2(N-1)$ messages per entry operation

- $N-1$ unicasts for the multicast request + $N-1$ replies
- N messages if the underlying network supports multicast
- $N-1$ unicast messages per exit operation
- 1 multicast if the underlying network supports multicast

Client delay: one round-trip time

Synchronization delay: one message transmission time
Maekawa’s algorithm

- First solution with a sublinear $O(\sqrt{N})$ message complexity.

- “Close to” Ricart-Agrawala’s solution, but each process is required to obtain permission from only a subset of peers.
Maekawa’s algorithm

With each process i, associate a subset S_i. Divide the set of processes into subsets that satisfy the following two conditions:

\[
i \in S_i \\
\forall i,j : 0 \leq i,j \leq n - 1 \mid S_i \cap S_j \neq \emptyset
\]

Main idea. Each process i is required to receive permission from S_i only. Correctness requires that multiple processes will never receive permission from all members of their respective subsets.
Maekawa’s algorithm

Example. Let there be seven processes 0, 1, 2, 3, 4, 5, 6

\[\begin{align*}
S_0 &= \{0, 1, 2\} \\
S_1 &= \{1, 3, 5\} \\
S_2 &= \{2, 4, 5\} \\
S_3 &= \{0, 3, 4\} \\
S_4 &= \{1, 4, 6\} \\
S_5 &= \{0, 5, 6\} \\
S_6 &= \{2, 3, 6\}
\end{align*}\]
Maekawa’s algorithm

Version 1 {Life of process I}

1. Send timestamped request to each process in Si.

2. Request received \rightarrow send ack to process with the lowest timestamp. Thereafter, "lock" (i.e. commit) yourself to that process, and keep others waiting.

3. Enter CS if you receive an ack from each member in Si.

4. To exit CS, send release to every process in Si.

5. Release received \rightarrow unlock yourself. Then send ack to the next process with the lowest timestamp.

$$S_0 = \{0, 1, 2\}$$
$$S_1 = \{1, 3, 5\}$$
$$S_2 = \{2, 4, 5\}$$
$$S_3 = \{0, 3, 4\}$$
$$S_4 = \{1, 4, 6\}$$
$$S_5 = \{0, 5, 6\}$$
$$S_6 = \{2, 3, 6\}$$
Maekawa’s algorithm-version 1

Safety. At most one process can enter its critical section at any time.

Let i and j attempt to enter their Critical Sections

$S_i \cap S_j \neq \emptyset$ implies there is a process $k \in S_i \cap S_j$

Process k will never send ack to both.

So it will act as the arbitrator and establishes ME1

$S_0 = \{0, 1, 2\}$
$S_1 = \{1, 3, 5\}$
$S_2 = \{2, 4, 5\}$
$S_3 = \{0, 3, 4\}$
$S_4 = \{1, 4, 6\}$
$S_5 = \{0, 5, 6\}$
$S_6 = \{2, 3, 6\}$
Maekawa’s algorithm-version 1

Liveness. *Unfortunately deadlock is possible!* Assume 0, 1, 2 want to enter their critical sections.

<table>
<thead>
<tr>
<th>$S_0 = {0, 1, 2}$</th>
<th>$S_1 = {1, 3, 5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_2 = {2, 4, 5}$</td>
<td>$S_3 = {0, 3, 4}$</td>
</tr>
<tr>
<td>$S_4 = {1, 4, 6}$</td>
<td>$S_5 = {0, 5, 6}$</td>
</tr>
<tr>
<td>$S_6 = {2, 3, 6}$</td>
<td></td>
</tr>
</tbody>
</table>

From $S_0 = \{0, 1, 2\}$, 0, 2 send *ack* to 0, but 1 sends *ack* to 1;

From $S_1 = \{1, 3, 5\}$, 1, 3 send *ack* to 1, but 5 sends *ack* to 2;

From $S_2 = \{2, 4, 5\}$, 4, 5 send *ack* to 2, but 2 sends *ack* to 0;

Now, 0 waits for 1 *(to send a release)*, 1 waits for 2 *(to send a release)*, and 2 waits for 0 *(to send a release)*. So deadlock is possible!
Maekawa’s algorithm-Version 2

Avoiding deadlock

If processes always receive messages in increasing order of timestamp, then deadlock “could be” avoided. But this is too strong an assumption.

Version 2 uses three additional messages:

- failed
- inquire
- relinquish

\[
\begin{align*}
S_0 &= \{0, 1, 2\} \\
S_1 &= \{1, 3, 5\} \\
S_2 &= \{2, 4, 5\} \\
S_3 &= \{0, 3, 4\} \\
S_4 &= \{1, 4, 6\} \\
S_5 &= \{0, 5, 6\} \\
S_6 &= \{2, 3, 6\}
\end{align*}
\]
Maekawa’s algorithm-Version 2

New features in version 2

- Send *ack* and set *lock* as usual.

- If *lock is set* and a request with a larger timestamp arrives, send *failed* (*you have no chance*). If the incoming request has a lower timestamp, then send *inquire* (*are you in CS?*) to the locked process.

- Receive *inquire* and at least one *failed* message \rightarrow send *relinquish*. The recipient resets the lock.

\[
\begin{align*}
S_0 &= \{0, 1, 2\} \\
S_1 &= \{1, 3, 5\} \\
S_2 &= \{2, 4, 5\} \\
S_3 &= \{0, 3, 4\} \\
S_4 &= \{1, 4, 6\} \\
S_5 &= \{0, 5, 6\} \\
S_6 &= \{2, 3, 6\}
\end{align*}
\]
Maekawa’s algorithm-Version 2
Let $K = |S_i|$. Let each process be a member of D subsets. When $N = 7$, $K = D = 3$. When $K = D$, $N = K(K-1)+1$. So $K = O(\sqrt{N})$

- The message complexity of Version 1 is $3\sqrt{N}$. Maekawa’s analysis of Version 2 reveals a complexity of $7\sqrt{N}$
Matrix construction
Summary

Mutual exclusion
- Coordinator-based token
- Token ring
- Ricart and Agrawala's timestamp algo.
- Maekawa's algo.