
Homework 5
CS425/ECE428 Spring 2019

Due: Wednesday, May 1 at 11:55 p.m.

1. Optimistic Concurrency . 18 points
Consider the interleaving of 3 transactions. ti here is used to represent temporary variables internal to
the transaction, while X and Y are objects that are read and updated by the transactions.

T1 T2 T3
1 t1 = X
2 t2 = Y
3 X = t2 + 1
4 t3 = X
5 X = t3 + 2
6 t4 = Y
7 Y = t1 + t4 + 3
8 Y = t2 + 4
9 t5 = Y
10 Y = t3 + t5 + 5

(a) (2 points) Is this interleaving serially equivalent? Why or why not?

(b) (2 points) Would this interleaving be possible with 2-phase locking, using either exclusive or read-
er/writer locks? Why or why not?

(c) (3 points) Suppose that timestamped optimistic concurrency was used. Write down for each step in
the interleaving the updated read and write timestamp of the object being read or written. Assume
that T1, T2, and T3 have timestamps 1, 2, and 3, respectively, and that the initial timestamps of
each object are 0.

For the following parts, consider a modification of the transaction interleaving above:

T1 T2 T3
1 t1 = X
2 t2 = Y
3 X = t2 + 1
4 t3 = X
5 X = t3 + 2
6 t4 = Y

7 X = t1 + t4 + 3

8 Y = t2 + 4
9 t5 = Y
10 Y = t3 + t5 + 5

(d) (2 points) Is this interleaving serially equivalent? Why or why not?

(e) (2 points) Explain what would happen in this interleaving using timestamped optimistic concur-
rency. Be detailed.

(f) (4 points) What would happen in this example if multi-version optimistic concurrency was used?
Write down for each operation which version of X and Y would be read or written, assuming
transactions T1. T2, T3 had timestamps 1, 2, and 3, respectively.

(g) (3 points) Repeat the previous part assuming that T1, T2, T3 had timestamps 3, 2, 1, respectively.

2. Bloom Filter .5 points
Consider a Bloom filter with 16 slots that uses 2 hash functions. We will use a version of SHA256 based
on your netid. To hash x, you will need to run:

$ echo -n <netid> <x> | openssl sha256

E.g.:

$ echo -n nikita 1 | openssl sha256

369ca22d9a6484a2109492a23ac355721b240132288436273fa16ce245ab04b0

If you prefer, you can use Python3 to calculate it:

$ python3

Python 3.7.0 (default, Aug 22 2018, 15:22:33)

[Clang 9.1.0 (clang-902.0.39.2)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import hashlib

>>> hashlib.sha256(b"nikita 1").hexdigest()

’369ca22d9a6484a2109492a23ac355721b240132288436273fa16ce245ab04b0’

We will use the first hex digit of the output (3 in this example) as the first hash function, and the second
digit (6) as the second hash function. Be sure to use your own netid in place of nikita here.

(a) (3 points) Add the strings ’1’, ’3’, ’5’, . . ., ’19’ to this Bloom filter and write down which bits have
been set. It’s not too hard to do manually but you may want to write a quick script.

(b) (2 points) Test the resulting Bloom filter for the values ’2’, ’4’, ’6’, . . ., ’20’. Do you get any false
positives, and if so, what are they?

3. Cassandra Quorums . 5 points
Consider a Cassandra key that is replicated at 5 nodes in the local data center, L1, L2, L3, L4, L5, three
nodes in remote data center 1, R1, R2, R3, and 3 nodes remote data center 2, S1, S2, S3.

(a) (3 points) What is the minimum number of nodes that need to respond for a request configured
with LOCAL QUORUM, EACH QUORUM, and QUORUM? (There are 3 subparts here)

(b) (2 points) Consider all possible combinations of read and write policies selected out of the quorum
options above. (E.g., EACH QUORUM for read, LOCAL QUORUM for write.) Which combinations
would not result in consistent reads? Write down an example read and write set for each combination
that would result in inconsistency.

4. MapReduce. .11 points
Implement the following computations using a chain of one or more MapReduce operations.

(a) (2 points) Given a directed graph G = (V,E), compute the indegree of each vertex. Input pairs
(k, v) where k is a graph vertex and v is a list of its out-neighbors; i.e., for each x ∈ v, (k, x) is a
directed edge in E. Output pairs (k, v) where k is a graph vertex and v is the number of nodes that
have k as its neighbors; i.e., v = |{x|(x, k) ∈ E}|

(b) (3 points) Compute a list of all nodes reachable from a vertex in exactly two hops. Input is as
above. Output is (k, v) where k is a graph vertex and v is a list of nodes reachable in two hops; i.e.,
v = {x|∃y such that (k, y) ∈ E and (y, v) ∈ E}.

(c) (3 points) Compute the size of a 4-neighborhood of each vertex; i.e., all the nodes reachable from
from a vertex in at most 4 hops. Input as above; output is (k, v) where k is a graph vertex and v
is the number of nodes reachable in at most 4 hops.

(d) (3 points) Compute the product of two matrices, M (1) an M (2). Input is (k, v) where k is a triple

(i, j, n) such that M
(n)
i,j = v. Output is (k, v) where k is a pair (i, j) such that M ′

i,j = v, where

M ′ = M (1) ×M (2).

Page 2

