1. (a)

(b)

()

Homework 4
CS425/ECE428 Spring 2019

Due: Wednesday, April 24 at 11:55 p.m.

(4 points) Modify the token ring mutual exclusion algorithm to support reader/writer-style mutual
exclusion. As a reminder, a read lock can be shared with other nodes, but conflicts with a write
lock.

(4 points) Analyze the best- and worst-case client and synchronization delays for N nodes. Note
that there are two types of client delays: read and write client, and three types of synchronization
delay: read/write, write/read, and write/write. Assume that the one-way communication delay
between two nodes in the ring is T' and there is no processing delay.

(2 points) Does your algorithm create a possibility of reader or writer starvation? Justify your
answer. (Note: you will not lose any points for an algorithm that can lead to starvation, nor gain
any points for an algorithm that does not.)

(4 points) Describe a modification of the Bully protocol that elects a leader and a vice-leader, which
should be the two nodes with the highest and second highest identifiers among all the live nodes.
Note that all nodes should know which is the leader and vice leader. Write down the pseudocode
for the algorithm, similar to what was contained in the lecture slides for Bully.

(2 points) Analyze the worst-case time for an election among N nodes, assuming no nodes fail after
an election has been called. Assume that the one-way communication delay between any nodes is
T and there is no processing delay.

(3 points) How would you modify Raft to use a Bully-style election algorithm? What might be an
advantage and disadvantage of this approach as compared with the Raft election?

3. Consider an implementation of a bank account transaction participant. It supports five RPCs: deduct,
which is called during a transaction, and canCommit, doCommit, and doAbort, which are called during
two-phase commit. Assuming a transaction always uses the correct txid and only calls deduct once per
transaction.

Below is Python-like code implementing the RPCs:

def deduct (txid , amount):
account . lock ()
will_commit [txid] = account.balance > amount
account . unlock ()

saved_amounts|[txid] = amount

def canCommit (txid):
return will_commit [txid]

def doCommit (txid):
account . balance —= saved_amounts[txid]

def doAbort(txid):

pass

(a)
(b)

do nothing

(3 points) Which of the ACID properties does this implementation violate? Explain your answer.

(3 points) Consider an alternate implementation:

def deduct (txid, amount):
account . lock ()
account.balance —= amount

will_

commit [txid] = account.balance > 0

account . unlock ()

saved_amounts [txid]| = amount

def canCommit (txid):
return will_commit [txid]

def doCommit (txid):

pass

nothing

def doAbort(txid):
account . lock ()
account . balance 4= saved_amounts [txid |
account . unlock ()

()

Which of the ACID properties does this implementation violate? Explain your answer.

(4 points) Write pseudocode that correctly implements all ACID properties

4. Consider a system with 5 replicas. The latency to access each replica is given in the table:

Node | Latency

o QW=

(a)

1ms
3ms
5ms
30 ms
35 ms

(2 points) What would you set the sizes of a read quorum (R) and write quorum (W) to be if you
wanted to minimize write latency?

(2 points) What would be the read and write latency using those quorum sizes, assuming optimal
choice of nodes for the quorum?

(2 points) What would be the read and write latency using those quorum sizes, assuming optimal
choice of nodes for the quorum, if A has failed?

(4 points) Imagine D and E are located in a remote data center. How would you change the number
of votes each node gets, and the quorum sizes, to ensure that each write is replicated outside the
data center, while still minimizing write latency? What would be the write and read latency in
your configuration?

Page 2

