
Homework 3
CS425/ECE428 Spring 2019

Due: Monday, April 8 at 12:00 NOON
NO LATE SUBMISSIONS ACCEPTED

1. Consider a Chord system with 12-bit identifiers. It has the following nodes, listed in hex and decimal
for your convenience:

014, 017, 066, 06b, 20, 23, 102, 107

095, 0a6, 0a9, 0c0, 149, 166, 169, 192

0dd, 105, 147, 153, 221, 261, 327, 339

15e, 175, 17f, 1dc, 350, 373, 383, 476

1f2, 21e, 27f, 2de, 498, 542, 639, 734

353, 3a4, 3bf, 3ce, 851, 932, 959, 974

403, 416, 442, 456, 1027, 1046, 1090, 1110

45c, 464, 483, 4aa, 1116, 1124, 1155, 1194

4ca, 4e8, 522, 539, 1226, 1256, 1314, 1337

55e, 571, 60d, 658, 1374, 1393, 1549, 1624

67b, 689, 6d3, 6f1, 1659, 1673, 1747, 1777

6fb, 712, 738, 741, 1787, 1810, 1848, 1857

749, 74f, 7d1, 7e9, 1865, 1871, 2001, 2025

849, 865, 8f2, 91b, 2121, 2149, 2290, 2331

926, 984, 996, 9b8, 2342, 2436, 2454, 2488

9b9, 9c1, a21, a43, 2489, 2497, 2593, 2627

a5c, a62, a6a, a72, 2652, 2658, 2666, 2674

a92, aac, ac1, ada, 2706, 2732, 2753, 2778

b01, b17, b21, b78, 2817, 2839, 2849, 2936

bb0, bcc, bd9, bdc, 2992, 3020, 3033, 3036

bf7, c18, c1b, c98, 3063, 3096, 3099, 3224

caf, cc0, ce5, d13, 3247, 3264, 3301, 3347

d9c, e0c, e27, e49, 3484, 3596, 3623, 3657

e63, e6d, e7a, edc, 3683, 3693, 3706, 3804

f4a, f5d, f71, fd6, 3914, 3933, 3953, 4054

(a) (4 points) List the finger table of node 0x926 (2342)

Solution:

i ft[i]
0 2436 (984)
1 2436 (984)
2 2436 (984)
3 2436 (984)
4 2436 (984)
5 2436 (984)
6 2436 (984)
7 2488 (9b8)
8 2627 (a43)
9 2936 (b78)
10 3484 (d9c)
11 327 (147)

(b) (4 points) List the nodes that 0x926 (2342) would contact during a lookup of the key 0x123 (291)



Solution:

2342 (926)
3484 (d9c)
4054 (fd6)
221 (0dd)
261 (105)
327 (147)

(c) (4 points) Identify the nodes that will store the largest expected number of keys and the smallest.
(Assume for now that a key is stored at only the successor node.) What is the ratio of their expected
storage?

Solution: 1549 (60d) will store the largest expected number of keys. (It will store 156/4096
of all keys.) 2489 (9b9) will store the smallest number of keys. (1/4096) Ratio: 156/1

(d) (4 points) A power outage takes out half the nodes: the ones with even identifiers. Assume no
stabilization algorithm has had a chance to run, and so the finger tables have not been updated.
List the nodes that 0x7e9 (2025) would contact to look up the key 0x480 (1152). (When a node in
the normal lookup protocol tries to contact a finger entry that is no longer alive, it switches to the
next best finger that is alive.)

Solution: 0x7e9 would normally contact 0x14 (its largest finger) but that failed, so it contacts
0xbf7 instead. 0bxf7 then contacts 0x403 (its largest finger). All nodes between 0x403 and
0x480 are even, so 0x403 relies on its successor lists to contact 0x483, which is the target of the
lookup.

2. (a) (8 points) Use an RPC compiler, such as Apache Thrift, to answer this question. Write down an
interface specification for a reader/writer locking service. Your API should allow you to create a
new lock and then lock/unlock it for reading and writing.

Use the RPC compiler to generate an implementation of your protocol. Include in your submission
the code for your interface definition (with comments), and a page each of the generated stub and
skeleton files.

Solution: A sample solution in Apache Thrift.

rwlock.thrift

1 namespace cpp rwlock

2

3 struct rwlock {

4 1: i32 no,

5 }

6

7 service ReadWriteLockService {

8 // create the lock

9 rwlock initLock(),

10

11 // acquire the read lock

12 void RLock(1:rwlock l),

13

14 // release the read lock

15 void RUnlock(1:rwlock l),

Page 2



16

17 // acquire the write lock

18 void Lock(1:rwlock l),

19

20 // release the write lock

21 void Unlock(1:rwlock l)

22 }

To get the generated files (in C++), use

1 thrift -r --gen cpp rwlock.thrift

Another sample solution in gRPC.

rwlock.proto

1 syntax = "proto3";

2

3 service ReadWriteLockService {

4 rpc initLock (void) returns (rwlock) {}

5 rpc RLock (rwlock) returns (void) {}

6 rpc RUnlock (rwlock) returns (void) {}

7 rpc Lock (rwlock) returns (void) {}

8 rpc Unlock (rwlock) returns (void) {}

9 }

10

11 message rwlock {

12 int32 no = 1;

13 }

14

15 message void {}

To get the generated files (in Python), use

1 python -m grpc_tools.protoc -I. --python_out=. \

2 --grpc_python_out=. rwlock.proto

(b) (2 points) Identify a function in the C, Go, Python, or Java standard library that has a side effect
but is idempotent. Briefly explain your answer.

Solution:
int fflush(FILE* stream) in C stdio.h header.
func ToUpper(string []byte) []byte in Golang bytes pkg.
void HashMap.clear() in Java java.util.HashMap package.
int(x) in Python build-in.

3. (a) (3 points) Consider a Raft cluster with five nodes, with logs as described by follows. Each event in
a log is denoted by a letter; different letters represent different events, and the subscript indicates
the term of the event.

• S1: committed: a1, b2, c2, uncommitted: d3
• S2: committed: a1, b2, uncommitted: c2, d3, e6

Page 3



• S3: committed: a1, b2, uncommitted: c2
• S4: committed: a1, b2, uncommitted: c2, d3, e6, f6
• S5: committed: a1, b2, c2, uncommitted: g5, h5, i5, j5, k5

Which of the five nodes could be elected leader? Explain.

Solution: Here are the nodes ordered in terms of the up-to-date check: S3, S1, S5, S2, S4. So
S5, S2, or S4 could get elected leader, the rest cannot get a majority of the votes.

(b) (2 points) Is d3 guaranteed to be eventually committed? Explain; you may need to offer a sequence
of events.

Solution: No; if S5 gets elected leader, it will overwrite the uncommitted part of the logs of
the followers and d3 will not be used.

(c) (3 points) Not related to the previous question, describe a sequence of events where three nodes
(out of five) could be in the leader state.

Solution: Consider five nodes S1, S2, S3, S4 and S5 with the following set of events:

1. S1 gets elected with 5 votes as the Leader.

2. S1 gets partioned out of the network.

3. S2 gets elected with 4 remaining votes as the Leader.

4. S2 gets partioned out of the network.

5. S3 gets elected with 3 remaining votes (still majority) as the Leader.

At the end, S1, S2 and S3 will be in Leader state.

4. (a) (4 points) Consider the following transaction (T1):

1: x = a.getbalance()

2: y = b.getbalance()

3: c.withdraw(x-y)

4: a.deposit(x-y)

List when the locks on each of the objects are acquired or upgraded, and what type of lock is
acquired. (x and y are local variables to the transaction)

Solution:

At 1 acquire read lock on a;

At 2 acquire read lock on b;

At 3 acquire write lock on c;

At 4 upgrade read lock on a to write lock;

(b) (3 points) Consider a second transaction (T2):

1: z = b.getbalance()

2: w = c.getbalance()

3: c.withdraw(z-w)

4: b.deposit(z-w)

(c) (3 points) Show an interleaving of T1 and T2 that is serially equivalent, but impossible under
two-phase locking (strict or reader/writer)

Page 4



Solution:

T1.1: x = a.getbalance()

T1.2: y = b.getbalance()

T1.3: c.withdraw(x-y)

T2.1: z = b.getbalance()

T2.2: w = c.getbalance()

T2.3: c.withdraw(z-w)

T2.4: b.deposit(z-w)

T1.4: a.deposit(x-y)

Conflicts here are T1.2–T2.4, T1.3–T2.2, T1.3–T2.3. In the interleaving above these all follow
the transaction order T1, T2, therefore the interleaving is serially equivalent. Hoewver, with
2PL, T1 will acquire a lock on c in T1.3 and not release it until after the commit, which would
prevent this interleaving from occuring.

(d) (3 points) Show an interleaving of T1 and T2 that is impossible with strict two-phase locking but
possible with non-strict locking (reader/writer)

Solution:

T1.1: read lock a; x = a.getbalance()

T1.2: read lock b; y = b.getbalance()

T2.1: read lock b; z = b.getbalance()

T1.3: write lock c; c.withdraw(x-y)

T1.4: upgrade lock a; a.deposit(x-y)

T1 commit, releases locks

T2.2: read lock c; w = c.getbalance()

T2.3: upgrade lock c; c.withdraw(z-w)

T2.4: upgrade lock b; b.deposit(z-w)

T2 commit, release all locks

This solution would be impossible with exclusive locks since T1.2 would acquire a lock on b,
which would prevent T2.1 from executing.

(e) (3 points) Suppose that instead of lock upgrades, transactions released a read lock and then ac-
quired a write lock. Show a non-serially equivalent interleaving that would be possible in this
situation.

Solution: Below is a non-serially equivalent execution

T2: read lock b; z = b.getbalance()

T2: read lock c: w = c.getbalance()

T2: read unlock c ...

T1: read lock a; x = a.getbalance()

T1: read lock b; y = b.getbalance()

T1: write lock c; c.withdraw(x-y)

T1: read unlock a; write lock a; a.deposit(x-y)

T1: unlock all, commit

T2: write lock c; c.withdraw(z-w)

T2: read unlock b; write lock b; b.deposit(z-w)

T2: unlock all, commit

Page 5


