
Homework 2
CS425/ECE428 Spring 2019

Due: Wednesday, Feb 20 at 11:55 p.m.

1. For this question, consider a distributed system where each pair of processes is connected by a first-in,
first-out (FIFO) reliable channel. Assume that there are no process failures.

(a) (4 points) In this system, if the basic multicast scheme (B-multicast) is used, what ordering
guarantees would be satisfied? FIFO, causal, and/or total? Justify your answer: either argue why
a guarantee would be satisfied, or present a counterexample.

Assume that a process immediately delivers a message to itself before sending it out to any other
processes.

Solution: Messages would be FIFO: if pi multicasts m and then m′, then at every pj , m will
arrive on the channel from pi to pj before m′.

Neither causal nor total ordering would not be satisfied, see counterexample below. A → B
but P2 delivers B before A.

P1

P2

P3

A

B

(b) (4 points) What if the reliable multicast scheme (R-multicast) were used instead? Assume again
that the process immediately delivers a message to itself before sending it out.

Solution: Causal ordering would be satisfied. When pi sends message X to pj (either because
pi initiated the message or during a rebroadcast), any message already delivered by pi before
X will have already been sent from pi to pj .

Total ordering would not be satisfied, see counterexample below. The dashed lines represent
the rebroadcast of messages A and B by the receiver. (The implementation of R-multicast on
the slides re-multicasts the received message to all other, including the sender, though a real
implementation could optimize this out.)

P1

P2

A

B

(c) (2 points) Do your answers for the above two parts change in a system with only two processes?



Solution: For B-multicast, with 2 processes the ordering is causal. Consider two events A and
B with A → B. Assume without loss of generality that A was sent by P1. If B was also sent
by P1 then P2 must deliver A before B due to FIFO ordering. If B was sent by P2, then B
must follow the delivery of A by P2. (If A is delivered after B is sent, then any messages sent
by P1 after A are also delivered after B is sent, which would make A and B concurrent.) In
both cases, A is delivered before B by both P1 and P2.

B-multicast is not total following a counterexample similar to the previous part.

R-multicast is causal but not total, since the arguments and counterexample in part (b) apply
in a system with only 2 processes.

2. (a) (3 points) Consider a synchronous system with N = 100 processes running the synchronous con-
sensus protocol. When sending a message, each value vi = z is encoded using two bytes. Assuming
there are no failures, how many total bytes are sent by the system over five rounds of the protocol,
starting from round 1?

Solution: Each process in the 1st round multicasts only its own value, therefore each process
will send 2(N − 1) bytes in the first round. Assuming a synchronous system with no failure,
every process will receive and communicate all the values in the next rounds which means
2N(N − 1) bytes will be communicated by each process. Therefore, in 5 rounds there will be
2(N − 1) + 4× 2N(N − 1) communicated bytes by each process in total. Since N = 100, total
number of bytes will be N [2(N − 1) + 4× 2N(N − 1)] = 7, 939, 800.

Assuming that we are also interested in counting the messages that each process sends to itself
the result changes to N [2N + 4× 2N2] = 8, 020, 000.

(b) (3 points) Consider a synchronous system where processes can only fail in pairs, so that in any
round, an even number of proceses fail (e.g., 0, 2, 4, etc.) How many rounds would you need to
ensure consensus among N = 100 processes if there is no bound on the number of failures?

Solution: After a failure-free round, the synchronous consensus algorithm ensures that all
processes have the same set of values and can therefore terminate. If we run the protocol for
50 rounds, then either there has been at least one failure-free round, in which case we can
terminate the protocol, or all processes have failed, in which case the protocol has terminated
anyway. So therefore 50 rounds are sufficient. (You can verify that 49 rounds are not sufficient
since it is possible that two processes with remain with different values.)

3. (3 points) Consider the following sequence of events, using the model from the Fisher-Lynch-Patterson
proof:

e1@p1 receive(m1), send(p2,m2), send(p3,m3)

e2@p2 receive(m2), send(p1,m4)

e3@p3 receive(m3), send(p2,m5), send(p1,m6)

e4@p1 receive(m4), send(p3,m7)

e5@p1 receive(m6), send(p2,m8)

e6@p2 receive(m8)

Which events can commute with e2?

Page 2



Solution: e3 and e5.

e1 sends a message that e2 receives and e4 receives a message that e2 sends. e6 happens on the same
process as e2.

4. For this question, consider the diagram below. It shows four messages, A,B,C,D, being multicast by
processes P1 and P3.

P1

P2

P3

A B

C D

(a) (6 points) Consider a FIFO multicast implementation using sequence numbers, as discussed in class.
Write down the sequence number vector for each send and receive event at each process, and the
sequence number sent with each message. Also indicate when each message will be delivered at
each process. (Do not worry about processes delivering their own message, e.g., P1 delivering A.)

Solution:

(b) (5 points) Repeat the exercise with a causal multicast implementation. (Instead of a sequence
number for each message you will include its sequence vector).

Page 3



Solution:

Page 4


