Lecture 9: Sequential Circuit Design

Deming Chen

Slides based on the initial set from David Harris
Outline

- Sequencing
- Sequencing Element Design
- Max and Min-Delay
- Clock Skew
- Time Borrowing
- Two-Phase Clocking

- Readings: 10.1-10.3.4
Sequencing

- **Combinational logic**
 - output depends on current inputs
- **Sequential logic**
 - output depends on current and previous inputs
 - Requires separating previous, current, future
 - Called *state* or *tokens*
 - Ex: FSM, pipeline
Sequencing Cont.

- If tokens moved through pipeline at constant speed, no sequencing elements would be necessary.
- Ex: fiber-optic cable
 - Light pulses (tokens) are sent down cable
 - Next pulse sent before first reaches end of cable
 - No need for hardware to separate pulses
 - But *dispersion* sets min time between pulses
- This is called *wave pipelining* in circuits
- In most circuits, dispersion is high
 - Delay fast tokens so they don’t catch slow ones.
Sequencing Overhead

- Use flip-flops to delay fast tokens so they move through exactly one stage each cycle.
- Inevitably adds some delay to the slow tokens.
- Makes circuit slower than just the logic delay.
 - Called sequencing overhead.
- Some people call this clocking overhead.
 - But it applies to asynchronous circuits too.
 - Inevitable side effect of maintaining sequence.
Sequencing Elements

- **Latch**: Level sensitive
 - a.k.a. transparent latch, D latch
- **Flip-flop**: edge triggered
 - A.k.a. master-slave flip-flop, D flip-flop, D register
- **Timing Diagrams**
 - Transparent
 - Opaque
 - Edge-trigger

![Timing Diagram](image)
Latch Design

- Pass Transistor Latch

Pros
- Tiny
- Low clock load

Cons
- V_t drop
- Nonrestoring
- Backdriving
- Output noise sensitivity
- Dynamic
- Diffusion input

Used in 1970’s
Latch Design

- Transmission gate
 + No V_t drop
 - Requires inverted clock

\[\text{D} \quad \text{Q} \]
Latch Design

- Inverting buffer
 + Restoring
 + No backdriving
 + Fixes either
 - Output noise sensitivity
 - Or diffusion input
 - Inverted output
Latch Design

- Tristate feedback
 - Static
 - Backdriving risk

- Static latches are now essential because of leakage
Latch Design

- Buffered input
 - Fixes diffusion input
 - Noninverting
Latch Design

- Buffered output
 + No backdriving

- Widely used in standard cells
 + Very robust (most important)
 - Rather large
 - Rather slow (1.5 – 2 FO4 delays)
 - High clock loading
Latch Design

- Datapath latch
 + smaller
 + faster
 - unbuffered input
Flip-Flop Design

- Flip-flop is built as pair of back-to-back latches

D \rightarrow X \rightarrow \overline{Q}

\overline{D} \rightarrow X \rightarrow Q
Enable

- Enable: ignore clock when en = 0
 - Mux: increase latch D-Q delay
 - Clock Gating: increase en setup time, skew
Reset

- Force output low when reset asserted
- Synchronous vs. asynchronous

Symbol

- Synchronous Reset
- Asynchronous Reset

Sequential Circuits

CMOS VLSI Design 4th Ed.
Set / Reset

- Set forces output high when enabled
- Flip-flop with asynchronous set and reset

![Diagram of a set/reset flip-flop](image)
Sequencing Methods

- Flip-flops
- 2-Phase Latches
- Pulsed Latches
Timing Diagrams

Contamination and Propagation Delays

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{pd}</td>
<td>Logic Prop. Delay</td>
</tr>
<tr>
<td>t_{cd}</td>
<td>Logic Cont. Delay</td>
</tr>
<tr>
<td>t_{pcq}</td>
<td>Latch/Flop Clk→Q Prop. Delay</td>
</tr>
<tr>
<td>t_{ccq}</td>
<td>Latch/Flop Clk→Q Cont. Delay</td>
</tr>
<tr>
<td>t_{pq}</td>
<td>Latch D→Q Prop. Delay</td>
</tr>
<tr>
<td>t_{cdq}</td>
<td>Latch D→Q Cont. Delay</td>
</tr>
<tr>
<td>t_{setup}</td>
<td>Latch/Flop Setup Time</td>
</tr>
<tr>
<td>t_{hold}</td>
<td>Latch/Flop Hold Time</td>
</tr>
</tbody>
</table>
Max-Delay: Flip-Flops

\[t_{pd} \leq T_c - (t_{setup} + t_{pcq}) \]

\(t_{pcq} \)
\(t_{pd} \)
\(t_{setup} \)

Combinational Logic

\(F_1 \)
\(F_2 \)

\(Q_1 \)
\(D_2 \)

\(T_c \)
Max Delay: 2-Phase Latches

\[
t_{pd} = t_{pd1} + t_{pd2} \leq T_c - \left(2t_{pdq}\right)\text{ sequencing overhead}
\]
Max Delay: Pulsed Latches

\[t_{pd} \leq T_c - \max(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw}) \]

sequencing overhead

(a) \(t_{pw} > t_{\text{setup}} \)

(b) \(t_{pw} < t_{\text{setup}} \)
Min-Delay: Flip-Flops

\[t_{cd} \geq t_{\text{hold}} - t_{ccq} \]
Min-Delay: 2-Phase Latches

\[t_{cd1}, t_{cd2} \geq t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} \]

Hold time reduced by nonoverlap

Paradox: hold applies twice each cycle, vs. only once for flops.

But a flop is made of two latches!
Min-Delay: Pulsed Latches

\[t_{cd} \geq t_{\text{hold}} - t_{ccq} + t_{pw} \]

Hold time increased by pulse width
Time Borrowing

- In a flop-based system:
 - Data launches on one rising edge
 - Must setup before next rising edge
 - If it arrives late, system fails
 - If it arrives early, time is wasted
 - Flops have hard edges

- In a latch-based system
 - Data can pass through latch while transparent
 - Long cycle of logic can borrow time into next
 - As long as each loop completes in one cycle
Time Borrowing Example

Loops may borrow time internally but must complete within the cycle.
How Much Borrowing?

2-Phase Latches

\[t_{\text{borrow}} \leq \frac{T_c}{2} - (t_{\text{setup}} + t_{\text{nonoverlap}}) \]

Pulsed Latches

\[t_{\text{borrow}} \leq t_{\text{pw}} - t_{\text{setup}} \]
We have assumed zero clock skew

Clocks really have uncertainty in arrival time
- Decreases maximum propagation delay
- Increases minimum contamination delay
- Decreases time borrowing
Skew: Flip-Flops

\[t_{pd} \leq T_c - (t_{pcq} + t_{setup} + t_{skew}) \]

sequencing overhead

\[t_{cd} \geq t_{hold} - t_{ccq} + t_{skew} \]
Skew: Latches

2-Phase Latches

\[t_{pd} \leq T_c - \left(2t_{pdq} \right) \]

sequencing overhead

\[t_{cd1}, t_{cd2} \geq t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}} \]

\[t_{\text{borrow}} \leq \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}} \right) \]

Pulsed Latches

\[t_{pd} \leq T_c - \max(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw} + t_{\text{skew}}) \]

sequencing overhead

\[t_{cd} \geq t_{\text{hold}} + t_{pw} - t_{ccq} + t_{\text{skew}} \]

\[t_{\text{borrow}} \leq t_{pw} - \left(t_{\text{setup}} + t_{\text{skew}} \right) \]
Two-Phase Clocking

- If setup times are violated, reduce clock speed
- If hold times are violated, chip fails at any speed
- In this class, working chips are most important
 - No tools to analyze clock skew
- An easy way to guarantee hold times is to use 2-phase latches with big nonoverlap times
- Call these clocks ϕ_1, ϕ_2 (ph1, ph2)
Safe Flip-Flop

- Past years used flip-flop with nonoverlapping clocks
 - Slow – nonoverlap adds to setup time
 - But no hold times
- In industry, use a better timing analyzer
 - Add buffers to slow signals if hold time is at risk

Diagram of Safe Flip-Flop

\[D \quad \phi_2 \quad X \quad \phi_2 \quad \phi_1 \quad \phi_1 \quad Q \quad Q \quad \bar{Q} \]
Adaptive Sequencing

- Designers include timing margin
 - Voltage
 - Temperature
 - Process variation
 - Data dependency
 - Tool inaccuracies

- Alternative: run faster and check for near failures
 - Idea introduced as “Razor”
 - Increase frequency until at the verge of error
 - Can reduce cycle time by ~30%
Summary

- **Flip-Flops:**
 - Very easy to use, supported by all tools

- **2-Phase Transparent Latches:**
 - Lots of skew tolerance and time borrowing

- **Pulsed Latches:**
 - Fast, some skew tol & borrow, hold time risk

<table>
<thead>
<tr>
<th></th>
<th>Sequencing overhead $(T_c - t_{pd})$</th>
<th>Minimum logic delay t_{cd}</th>
<th>Time borrowing t_{borrow}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flip-Flops</td>
<td>$t_{peq} + t_{setup} + t_{skew}$</td>
<td>$t_{hold} - t_{eq} + t_{skew}$</td>
<td>0</td>
</tr>
<tr>
<td>Two-Phase Transparent Latches</td>
<td>$2t_{pdq}$</td>
<td>$t_{hold} - t_{eq} - t_{nonoverlap} + t_{skew}$ in each half-cycle</td>
<td>$\frac{T_c}{2} - (t_{setup} + t_{nonoverlap} + t_{skew})$</td>
</tr>
<tr>
<td>Pulsed Latches</td>
<td>$\max(t_{pdq}, t_{peq} + t_{setup} - t_{peq} + t_{skew})$</td>
<td>$t_{hold} - t_{eq} + t_{peq} + t_{skew}$</td>
<td>$t_{peq} - (t_{setup} + t_{skew})$</td>
</tr>
</tbody>
</table>
Next Lecture

- Wires
 - Readings: 6.1-6.2.2; 6.3.1-6.3.3; 6.4.1-6.4.2