Lecture 6: DC & Transient Response

Deming Chen

Slides based on the initial set from David Harris
Outline

- Pass Transistors
- DC Response
- Logic Levels and Noise Margins
- Transient Response
- RC Delay Models
- Delay Estimation

- Readings 2.5, 4.1-4.3
We have assumed source is grounded

What if source > 0?

- e.g. pass transistor passing V_{DD}

$V_g = V_{DD}$

- If $V_s > V_{DD}-V_t$, $V_{gs} < V_t$
- Hence transistor would turn itself off

nMOS pass transistors pull no higher than $V_{DD}-V_{tn}$

- Called a degraded “1”
- Approach degraded value slowly (low I_{ds})

pMOS pass transistors pull no lower than V_{tp}

Transmission gates are needed to pass both 0 and 1
Pass Transistor Ckts

\[V_s = V_{DD} - V_{tn} \]

\[V_s = |V_{tp}| \]

\[V_{DD} \]

\[V_{SS} \]
DC Response

- DC Response: V_{out} vs. V_{in} for a gate
- Ex: Inverter
 - When $V_{in} = 0$ \(\rightarrow\) $V_{out} = V_{DD}$
 - When $V_{in} = V_{DD}$ \(\rightarrow\) $V_{out} = 0$
 - In between, V_{out} depends on transistor size and current
 - By KCL, must settle such that $I_{dsn} = |I_{dsp}|$
 - We could solve equations
 - But graphical solution gives more insight
Transistor Operation

- Current depends on region of transistor behavior
- For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?
nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} < V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
</tr>
<tr>
<td>$V_{in} < V_{tn}$</td>
<td>$V_{in} > V_{tn}$</td>
<td>$V_{in} > V_{tn}$</td>
</tr>
<tr>
<td></td>
<td>$V_{dsn} < V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
</tr>
<tr>
<td></td>
<td>$V_{out} < V_{in} - V_{tn}$</td>
<td>$V_{out} > V_{in} - V_{tn}$</td>
</tr>
</tbody>
</table>

$V_{gsn} = V_{in}$

$V_{dsn} = V_{out}$

![nMOS Circuit Diagram]
pMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsp} > V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
</tr>
<tr>
<td>$V_{in} > V_{DD} + V_{tp}$</td>
<td>$V_{in} < V_{DD} + V_{tp}$</td>
<td>$V_{in} < V_{DD} + V_{tp}$</td>
</tr>
<tr>
<td>$V_{dsp} > V_{gsp} - V_{tp}$</td>
<td>$V_{dsp} > V_{gsp} - V_{tp}$</td>
<td>$V_{dsp} < V_{gsp} - V_{tp}$</td>
</tr>
<tr>
<td>$V_{out} > V_{in} - V_{tp}$</td>
<td>$V_{out} < V_{in} - V_{tp}$</td>
<td>$V_{out} < V_{in} - V_{tp}$</td>
</tr>
</tbody>
</table>

- $V_{gsp} = V_{in} - V_{DD}$
- $V_{tp} < 0$
- $V_{dsp} = V_{out} - V_{DD}$

![pMOS Circuit Diagram](image)
Make pMOS is wider than nMOS such that $\beta_n = \beta_p$
Current vs. V_{out}, V_{in}

I_{dsn}, $|I_{\text{dsp}}|$
Load Line Analysis

- For a given V_{in}:
 - Plot I_{dsn}, I_{dsp} vs. V_{out}
 - V_{out} must be where $|\text{currents}|$ are equal in

- Plot I_{dsn}, $|I_{\text{dsp}}|$ vs. V_{out}
- V_{out} must be where $|\text{currents}|$ are equal in

Diagram showing V_{in} and V_{out} with corresponding I_{dsn} and I_{dsp} curves.
Load Line Analysis

\[V_{in} = 0 \]

\[V_{in0}, V_{in1}, V_{in2}, V_{in3}, V_{in4}, V_{in5} \]

\[V_{out}, V_{DD} \]

DC and Transient Response

CMOS VLSI Design 4th Ed.
Transcribe points onto V_{in} vs. V_{out} plot

DC Transfer Curve
Revisit transistor operating regions

<table>
<thead>
<tr>
<th>Region</th>
<th>nMOS</th>
<th>pMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cutoff</td>
<td>Linear</td>
</tr>
<tr>
<td>B</td>
<td>Saturation</td>
<td>Linear</td>
</tr>
<tr>
<td>C</td>
<td>Saturation</td>
<td>Saturation</td>
</tr>
<tr>
<td>D</td>
<td>Linear</td>
<td>Saturation</td>
</tr>
<tr>
<td>E</td>
<td>Linear</td>
<td>Cutoff</td>
</tr>
</tbody>
</table>

Operating Regions

DC and Transient Response CMOS VLSI Design 4th Ed. 14
Beta Ratio

- If $\beta_p / \beta_n \neq 1$, switching point will move from $V_{DD}/2$
- Called skewed gate
- Other gates: collapse into equivalent inverter
Noise Margins

- How much noise can a gate input see before it does not recognize the input?

![Diagram showing noise margins and characteristics of a CMOS gate]

- **Output Characteristics**
 - Logical High Output Range
 - Logical Low Output Range

- **Input Characteristics**
 - Logical High Input Range
 - Logical Low Input Range

- **Indeterminate Region**
 - \(V_{OH} \) to \(V_{IL} \)
 - \(NM_{H} \) to \(NM_{L} \)

- **Threshold Voltages**
 - \(V_{DD} \)
 - \(V_{OL} \)
 - \(V_{OH} \)
 - \(V_{IL} \)
 - \(V_{IH} \)
 - \(V_{IL} \)
To maximize noise margins, select logic levels at

- unity gain point of DC transfer characteristic

\[\beta_p/\beta_n > 1 \]
Transient Response

- **DC analysis** tells us V_{out} if V_{in} is constant
- **Transient analysis** tells us $V_{out}(t)$ if $V_{in}(t)$ changes
 - Requires solving differential equations
- Input is usually considered to be a step or ramp
 - From 0 to V_{DD} or vice versa
Inverter Step Response

- Ex: find step response of inverter driving load cap

\[
V_{in}(t) = u(t - t_0)V_{DD}
\]

\[
V_{out}(t < t_0) = V_{DD}
\]

\[
d\frac{V_{out}(t)}{dt} = -\frac{I_{dsn}(t)}{C_{load}}
\]

\[
I_{dsn}(t) = \begin{cases}
0 & t \leq t_0 \\
\frac{\beta}{2}(V_{DD} - V_t)^2 & V_{out} > V_{DD} - V_t \\
\beta \left(V_{DD} - V_t - \frac{V_{out}(t)}{2}\right) & V_{out} < V_{DD} - V_t
\end{cases}
\]
Delay Definitions

- t_{pdr}: *rising propagation delay*
 - From input to rising output crossing $V_{DD}/2$

- t_{pdf}: *falling propagation delay*
 - From input to falling output crossing $V_{DD}/2$

- t_{pd}: *average propagation delay*
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$

- t_r: *rise time*
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}

- t_f: *fall time*
 - From output crossing 0.8 V_{DD} to 0.2 V_{DD}
Delay Definitions

- t_{cdr}: rising contamination delay
 - From input to rising output crossing $V_{DD}/2$
- t_{cdf}: falling contamination delay
 - From input to falling output crossing $V_{DD}/2$
- t_{cd}: average contamination delay
 - $t_{pd} = (t_{cdr} + t_{cdf})/2$
Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write, may hide insight

\[V_{in}, V_{out}, t_{pd}, \text{ etc.} \]
Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask “What if?”
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - \(C = \) total capacitance on output node
 - Use effective resistance \(R \)
 - So that \(t_{pd} = RC \)
- Characterize transistors by finding their effective \(R \)
 - Depends on average current as gate switches
Effective Resistance

- Shockley models have limited value
 - Not accurate enough for modern transistors
 - Too complicated for much hand analysis
- Simplification: treat transistor as resistor
 - Replace \(I_{ds}(V_{ds}, V_{gs}) \) with effective resistance \(R \)
 - \(I_{ds} = \frac{V_{ds}}{R} \)
 - \(R \) averaged across switching of digital gate
- Too inaccurate to predict current at any given time
 - But good enough to predict RC delay
RC Delay Model

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance $2R$, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width
RC Values

- Capacitance
 - \(C = C_g = C_s = C_d = 2 \text{ fF/\mu m} \) of gate width in 0.6 \(\mu \text{m} \)
 - Gradually decline to 1 fF/\(\mu \text{m} \) in 65 nm

- Resistance
 - \(R \approx 10 \text{ K\Omega\cdot\mu m} \) in 0.6 \(\mu \text{m} \) process
 - Improves with shorter channel lengths
 - 1.25 K\(\Omega \cdot \mu \text{m} \) in 65 nm process

- Unit transistors
 - May refer to minimum contacted device (4/2 \(\lambda \))
 - Or maybe 1 \(\mu \text{m} \) wide device
 - Doesn’t matter as long as you are consistent
Inverter Delay Estimate

- Estimate the delay of a fanout-of-1 inverter

\[d = 6RC \]
Delay Model Comparison

(V)

1.0

0.5

0.0

0.0 20p 40p 60p 80p

t(s)

B (SPICE)

B (Shockley)

B (RC Model)
Example: 3-input NAND

Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).
Annotate the 3-input NAND gate with gate and diffusion capacitance.
Elmore Delay

- ON transistors look like resistors
- Pullup or pulldown network modeled as RC ladder
- Elmore delay of RC ladder

\[t_{pd} \approx \sum_{\text{nodes } i} R_{i-to-source} C_i \]

\[= R_1 C_1 + (R_1 + R_2) C_2 + \ldots + (R_1 + R_2 + \ldots + R_N) C_N \]
Example: 3-input NAND

- Estimate worst-case rising and falling delay of 3-input NAND driving h identical gates.

$$t_{pdr} = (9 + 5h)RC$$

$$t_{pdf} = (3C)(\frac{R}{3}) + (3C)(\frac{R}{3} + \frac{R}{3}) + \left[(9 + 5h)C\right](\frac{R}{3} + \frac{R}{3} + \frac{R}{3})$$

$$= (12 + 5h)RC$$
Delay Components

- Delay has two parts
 - *Parasitic delay*
 - 9 or 12 RC
 - Independent of load
 - *Effort delay*
 - 5h RC
 - Proportional to load capacitance
Contamination Delay

- Best-case (contamination) delay can be substantially less than propagation delay.
- Ex: If all three inputs fall simultaneously

\[t_{cdr} = \left[(9 + 5h)C \right] \left(\frac{R}{3} \right) = \left(3 + \frac{5}{3}h \right) RC \]
We assumed contacted diffusion on every s / d.

Good layout minimizes diffusion area.

Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too.
Layout Comparison

Which layout is better?

A

V_{DD}

A

B

X

X

X

X

Y

GND

B

V_{DD}

A

B

X

X

X

X

Y

GND
Summary

- Continued on transistors
 - Pass Transistors, Operations, I-V Characteristics, DC Response, Noise Margins, Transient Response, etc.
- Delay Models and Delay Estimation

- Next lecture
 - SPICE
 - Readings 8.1-8.2