Lecture 3: Circuits & Layout

Deming Chen

Slides based on the initial set from David Harris
Outline

- CMOS Gate Design
- Pass Transistors
- CMOS Latches & Flip-Flops
- Standard Cell Layouts
- Stick Diagrams

- Reading: 1.4.1-6, 1.5.3-5
Complementary CMOS

- Complementary CMOS logic gates
 - nMOS *pull-down network*
 - pMOS *pull-up network*
 - a.k.a. static CMOS

<table>
<thead>
<tr>
<th></th>
<th>Pull-up OFF</th>
<th>Pull-up ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull-down OFF</td>
<td>Z (float)</td>
<td>1</td>
</tr>
<tr>
<td>Pull-down ON</td>
<td>0</td>
<td>X (crowbar)</td>
</tr>
</tbody>
</table>
Series and Parallel

- **nMOS**: 1 = ON
- **pMOS**: 0 = ON
- **Series**: both must be ON
- **Parallel**: either can be ON
Conduction Complement

- Complementary CMOS gates always produce 0 or 1
- Ex: NAND gate
 - Series nMOS: Y=0 when both inputs are 1
 - Thus Y=1 when either input is 0
 - Requires parallel pMOS

- Rule of *Conduction Complements*
 - Pull-up network is complement of pull-down
 - Parallel -> series, series -> parallel
Activity:
- Sketch a 4-input CMOS NOR gate

[Diagram showing a 4-input CMOS NOR gate with inputs A, B, C, D and output Y]
Compound Gates

- Compound gates can do any inverting function
- Ex: \(Y = A \cdot B + C \cdot D \) (AND-AND-OR-INVERT, AOI22)

(a)

(b)

(c)

(d)

(e)

(f)
Example: O3AI

\[Y = (A + B + C) \cdot D \]
Signal Strength

- Strength of signal
 - How close it approximates ideal voltage source
- V_{DD} and GND rails are strongest 1 and 0
- nMOS pass strong 0
 - But degraded or weak 1
- pMOS pass strong 1
 - But degraded or weak 0
- Thus nMOS are best for pull-down network
Pass Transistors

Transistors can be used as switches

\[g = 0 \]
\[s \rightarrow \neg \rightarrow d \]
\[g = 1 \]
\[s \rightarrow \rightarrow d \]

Input \(g = 1 \) Output
0 \(\rightarrow \rightarrow \) strong 0
1 \(\rightarrow \rightarrow \) degraded 1

Input \(g = 0 \) Output
0 \(\rightarrow \rightarrow \) degraded 0
1 \(\rightarrow \rightarrow \) strong 1
Transmission Gates

- Pass transistors produce degraded outputs
- *Transmission gates* pass both 0 and 1 well

\[g = 0, \ gb = 1 \]
\[g = 1, \ gb = 0 \]
\[a \rightarrow b \]

Input	Output
\[g = 1, \ gb = 0 \]
\[0 \rightarrow \text{strong 0} \] upper

\[g = 1, \ gb = 0 \]
\[1 \rightarrow \text{strong 1} \] lower
Tristates

Tristate buffer produces Z when not enabled

<table>
<thead>
<tr>
<th>EN</th>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Nonrestoring Tristate

- Transmission gate acts as tristate buffer
 - Only two transistors
 - But *nonrestoring*
 - Noise on A is passed on to Y

\[\text{EN} \]
\[A \rightarrow Y \]
\[\text{EN} \]
Tristate Inverter

- Tristate inverter produces restored output
 - Violates conduction complement rule
 - Because we want a Z output

\[Y = \begin{cases} \text{Z} & \text{if EN} = 0 \\ \overline{A} & \text{if EN} = 1 \end{cases} \]
Multiplexers

- A 2:1 multiplexer chooses between two inputs.

<table>
<thead>
<tr>
<th>S</th>
<th>D1</th>
<th>D0</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>1</td>
</tr>
</tbody>
</table>

![Multiplexer Diagram]
Gate-Level Mux Design

- $Y = SD_1 + \bar{SD}_0$ (too many transistors)
- How many transistors are needed? 20
Transmission Gate Mux

- Nonrestoring mux uses two transmission gates
 - Only 4 transistors
Inverting Mux

- Inverting multiplexer
 - Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing
- Noninverting multiplexer adds an inverter
4:1 Multiplexer

- 4:1 mux chooses one of 4 inputs using two selects
 - Two levels of 2:1 muxes
 - Or four tristates
D Latch

- When $CLK = 1$, latch is *transparent*
 - D flows through to Q like a buffer
- When $CLK = 0$, the latch is *opaque*
 - Q holds its old value independent of D

a.k.a. transparent latch or level-sensitive latch
D Latch Design

- Multiplexer chooses D or old Q
D Latch Operation

CLK = 1

CLK = 0

D

Q

Q

D

Q

CLK

D

Q
D Flip-flop

- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

![D Flip-flop Diagram]
D Flip-flop Design

- Built from master and slave D latches
D Flip-flop Operation

CLK = 0

CLK = 1

CLK

D

Q
Race Condition

- Back-to-back flops can malfunction from clock skew
 - Second flip-flop fires late
 - Sees first flip-flop change and captures its result
 - Called *hold-time failure* or *race condition*
Nonoverlapping Clocks

- Nonoverlapping clocks can prevent races
 - As long as nonoverlap exceeds clock skew
 - Industry manages skew more carefully

![Nonoverlapping Clocks Diagram](image-url)
Gate Layout

- Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts
Example: Inverter

(a)

(b) Substrate T
Example: NAND3

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- 32 λ by 40 λ
Stick diagrams help plan layout quickly
- Need not be to scale
- Draw with color pencils or dry-erase markers

Stick Diagrams

\(V_{DD} \)

\[\begin{align*}
A & \quad Y \\
\times & \quad \times \\
GND & \quad \text{INV}
\end{align*} \]

\(V_{DD} \)

\[\begin{align*}
A & \quad B & \quad C \\
\times & \quad \times & \quad \times \\
\times & \quad \times & \quad \times \\
GND & \quad \text{NAND3}
\end{align*} \]

Legend:
- blue: metal1
- red: poly
- green: ndiff
- yellow: pdiff
- black: contact
A wiring track is the space required for a wire
- 4 λ width, 4 λ spacing from neighbor = 8 λ pitch
Transistors also consume one wiring track
Well spacing

- Wells must surround transistors by 6 \(\lambda \)
 - Implies 12 \(\lambda \) between opposite transistor flavors
 - Leaves room for one wire track
Area Estimation

- Estimate area by counting wiring tracks
 - Multiply by 8 to express in \(\text{mm} \)
Example: O3Al

Sketch a stick diagram for O3Al and estimate area

\[Y = (A + B + C) \cdot D \]

Diagram:
- 6 tracks = 48
- 5 tracks = 40
Summary

- MOS Transistors are stack of gate, oxide, silicon
- Can be viewed as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors

Next lecture:
- A simple MIPS Microprocessor
- Reading: 1.7-1.12