Lecture 6: DC & Transient Response

Slides courtesy of Deming Chen

Slides based on the initial set from David Harris
Outline

- Pass Transistors
- DC Response
- Logic Levels and Noise Margins
- Transient Response
- RC Delay Models
- Delay Estimation

- Readings 2.5, 4.1-4.3
Pass Transistors

- We have assumed source is grounded
- What if source > 0?
 - e.g. pass transistor passing \(V_{DD} \)
- \(V_g = V_{DD} \)
 - If \(V_s > V_{DD} - V_t \), \(V_{gs} < V_t \)
 - Hence transistor would turn itself off
- nMOS pass transistors pull no higher than \(V_{DD} - V_{tn} \)
 - Called a degraded “1”
 - Approach degraded value slowly (low \(I_{ds} \))
- pMOS pass transistors pull no lower than \(V_{tp} \)
- Transmission gates are needed to pass both 0 and 1
Pass Transistor Ckts

\[V_{DD} \]

\[V_{DD} \]

\[V_{SS} \]

\[V_{DD} \]

\[|V_{tp}| \]

\[V_{DD} - V_{tn} \]

\[V_{DD} - 2V_{tn} \]
DC Response

- DC Response: V_{out} vs. V_{in} for a gate
- Ex: Inverter
 - When $V_{in} = 0$ \Rightarrow $V_{out} = V_{DD}$
 - When $V_{in} = V_{DD}$ \Rightarrow $V_{out} = 0$
 - In between, V_{out} depends on transistor size and current
 - By KCL, must settle such that $I_{dsn} = |I_{dsp}|$
 - We could solve equations
 - But graphical solution gives more insight
Transistor Operation

- Current depends on region of transistor behavior
- For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?
nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} <$</td>
<td>$V_{gsn} >$</td>
<td>$V_{gsn} >$</td>
</tr>
<tr>
<td>$V_{dsn} <$</td>
<td></td>
<td>$V_{dsn} >$</td>
</tr>
</tbody>
</table>

Diagram

![nMOS Circuit Diagram](image-url)
pMOS Operation

Cutoff
- $V_{gsp} > V_{tp}$
- $V_{in} > V_{DD} + V_{tp}$

Linear
- $V_{gsp} < V_{tp}$
- $V_{in} < V_{DD} + V_{tp}$
- $V_{dsp} > V_{gsp} - V_{tp}$
- $V_{out} > V_{in} - V_{tp}$

Saturated
- $V_{gsp} < V_{tp}$
- $V_{in} < V_{DD} + V_{tp}$
- $V_{dsp} < V_{gsp} - V_{tp}$
- $V_{out} < V_{in} - V_{tp}$

Equations
- $V_{gsp} = V_{in} - V_{DD}$
- $V_{tp} < 0$
- $V_{dsp} = V_{out} - V_{DD}$
I-V Characteristics

- Make pMOS is wider than nMOS such that $\beta_n = \beta_p$
Current vs. \(V_{\text{out}}, V_{\text{in}} \)

\[I_{\text{dsn}}, |I_{\text{dsp}}|, V_{\text{in0}}, V_{\text{in1}}, V_{\text{in2}}, V_{\text{in3}}, V_{\text{in4}}, V_{\text{in5}}, V_{\text{out}}, V_{\text{DD}} \]
Load Line Analysis

- For a given V_{in}:
 - Plot I_{dsn}, I_{dsp} vs. V_{out}
 - V_{out} must be where $|currents|$ are equal in

\[V_{in0}, V_{in1}, V_{in2}, V_{in3}, V_{in4} \]

\[V_{out}, V_{DD}, V_{in5} \]
Load Line Analysis

\[V_{in0} \]
\[V_{in1} \]
\[V_{in2} \]
\[V_{in3} \]
\[V_{in4} \]

\[V_{out} \rightarrow V_{DD} \]

\[V_{in} = 0 \quad 0.2V \quad 0.4V \quad 0.6V \quad 0.8V \quad V_{DD} \]
DC Transfer Curve

- Transcribe points onto V_{in} vs. V_{out} plot
Operating Regions

- Revisit transistor operating regions

<table>
<thead>
<tr>
<th>Region</th>
<th>nMOS</th>
<th>pMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Revisit transistor operating regions

![Operating Regions Diagram](image-url)

- Revisit transistor operating regions

![Operating Regions Diagram](image-url)

- Revisit transistor operating regions

![Operating Regions Diagram](image-url)
Beta Ratio

- If $\beta_p / \beta_n \neq 1$, switching point will move from $V_{DD}/2$
- Called *skewed* gate
- Other gates: collapse into equivalent inverter

![Graph showing the relationship between V_{in}, V_{out}, V_{DD}, and β_p / β_n]
Noise Margins

- How much noise can a gate input see before it does not recognize the input?

![Diagram showing noise margins]

- Input Characteristics:
 - \(V_{IH} \): Logical High Input Range
 - \(V_{IL} \): Logical Low Input Range
 - \(V_{NMH} \), \(V_{NMH} \): Noise Margins

- Output Characteristics:
 - \(V_{OH} \): Logical High Output Range
 - \(V_{OL} \): Logical Low Output Range
 - \(V_{DD} \): Power Supply
 - \(GND \): Ground

- Indeterminate Region:
 - \(V_{OH} \) to \(V_{NMH} \)
 - \(V_{NMH} \) to \(V_{NMH} \)
 - \(V_{NMH} \) to \(V_{OL} \)
 - \(V_{IL} \) to \(V_{NMH} \)

DC and Transient Response
Logic Levels

- To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristic

![Diagram showing logic levels and unity gain point](image-url)
Transient Response

- **DC analysis** tells us V_{out} if V_{in} is constant
- **Transient analysis** tells us $V_{out}(t)$ if $V_{in}(t)$ changes
 - Requires solving differential equations
- Input is usually considered to be a step or ramp
 - From 0 to V_{DD} or vice versa
Inverter Step Response

- Ex: find step response of inverter driving load cap

\[V_{in}(t) = \]

\[V_{out}(t < t_0) = \]

\[\frac{dV_{out}(t)}{dt} = \]

\[I_{dsn}(t) = \begin{cases}
 t \leq t_0 \\
 V_{out} > V_{DD} - V_t \\
 V_{out} < V_{DD} - V_t
\end{cases} \]
Delay Definitions

- \(t_{pdr} \): *rising propagation delay*
 - From input to rising output crossing \(V_{DD}/2 \)
- \(t_{pdf} \): *falling propagation delay*
 - From input to falling output crossing \(V_{DD}/2 \)
- \(t_{pd} \): *average propagation delay*
 - \(t_{pd} = (t_{pdr} + t_{pdf})/2 \)
- \(t_r \): *rise time*
 - From output crossing 0.2 \(V_{DD} \) to 0.8 \(V_{DD} \)
- \(t_f \): *fall time*
 - From output crossing 0.8 \(V_{DD} \) to 0.2 \(V_{DD} \)
Delay Definitions

- t_{cdr}: rising contamination delay
 - From input to rising output crossing $V_{DD}/2$
- t_{cdf}: falling contamination delay
 - From input to falling output crossing $V_{DD}/2$
- t_{cd}: average contamination delay
 - $t_{pd} = (t_{cdr} + t_{cdf})/2$
Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write, may hide insight
Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask “What if?”
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - \(C = \) total capacitance on output node
 - Use effective resistance \(R \)
 - So that \(t_{pd} = RC \)
- Characterize transistors by finding their effective \(R \)
 - Depends on average current as gate switches
Effective Resistance

- Shockley models have limited value
 - Not accurate enough for modern transistors
 - Too complicated for much hand analysis
- Simplification: treat transistor as resistor
 - Replace \(I_{ds}(V_{ds}, V_{gs}) \) with effective resistance \(R \)
 - \(I_{ds} = \frac{V_{ds}}{R} \)
 - \(R \) averaged across switching of digital gate
- Too inaccurate to predict current at any given time
 - But good enough to predict RC delay
Use equivalent circuits for MOS transistors
- Ideal switch + capacitance and ON resistance
- Unit nMOS has resistance R, capacitance C
- Unit pMOS has resistance 2R, capacitance C

- Capacitance proportional to width
- Resistance inversely proportional to width
RC Values

- Capacitance
 - \(C = C_g = C_s = C_d = 2 \text{ fF/\mu m of gate width in 0.6 \mu m} \)
 - Gradually decline to 1 fF/\mu m in 65 nm

- Resistance
 - \(R \approx 10 \text{ K}\Omega\cdot\mu\text{m in 0.6 \mu m process} \)
 - Improves with shorter channel lengths
 - 1.25 K\Omega\cdot\mu\text{m in 65 nm process}

- Unit transistors
 - May refer to minimum contacted device (4/2 \(\lambda \))
 - Or maybe 1 \mu m wide device
 - Doesn’t matter as long as you are consistent
Inverter Delay Estimate

- Estimate the delay of a fanout-of-1 inverter

\[d = 6RC \]
Delay Model Comparison

![Delay Model Comparison Graph]

- **A**
- **B (SPICE)**
- **B (Shockley)**
- **B (RC Model)**

(V) vs. t(s) for different delay models.
Example: 3-input NAND

Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).
Annotate the 3-input NAND gate with gate and diffusion capacitance.
Elmore Delay

- ON transistors look like resistors
- Pullup or pulldown network modeled as RC ladder
- Elmore delay of RC ladder

\[t_{pd} \approx \sum_{i \text{ to } \text{source}} R_i \cdot C_i \]

\[= R_1 C_1 + (R_1 + R_2) C_2 + \ldots + (R_1 + R_2 + \ldots + R_N) C_N \]
Example: 3-input NAND

- Estimate worst-case rising and falling delay of 3-input NAND driving \(h \) identical gates.

\[
t_{\text{pdr}} = (9 + 5h)RC
\]

\[
t_{\text{pdf}} = (3C)(\frac{R}{3}) + (3C)(\frac{R}{3} + \frac{R}{3}) + [(9 + 5h)C](\frac{R}{3} + \frac{R}{3} + \frac{R}{3})
\]

\[
= (12 + 5h)RC
\]
Delay Components

- Delay has two parts
 - *Parasitic delay*
 - 9 or 12 RC
 - Independent of load
 - *Effort delay*
 - 5h RC
 - Proportional to load capacitance
Contamination Delay

- Best-case (contamination) delay can be substantially less than propagation delay.
- Ex: If all three inputs fall simultaneously

\[t_{cdr} = \left[(9 + 5h)C \right] \left(\frac{R}{3} \right) = \left(3 + \frac{5}{3}h \right) RC \]
Diffusion Capacitance

- We assumed contacted diffusion on every s/d.
- Good layout minimizes diffusion area
- Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too
Layout Comparison

Which layout is better?

A

V\text{DD}

B

Y

V\text{DD}

\text{GND}

A

V\text{DD}

B

Y

V\text{DD}

\text{GND}

\text{GND}
Summary

- Continued on transistors
 - Pass Transistors, Operations, I-V Characteristics, DC Response, Noise Margins, Transient Response, etc.
- Delay Models and Delay Estimation

Next lecture
- SPICE
 - Readings 8.1-8.2