Lecture 3: Circuits & Layout

Slides courtesy of Deming Chen

Slides based on the initial set from David Harris
Outline

- CMOS Gate Design
- Pass Transistors
- CMOS Latches & Flip-Flops
- Standard Cell Layouts
- Stick Diagrams

- Reading: 1.4, 1.5.3-5
Complementary CMOS

- Complementary CMOS logic gates
 - nMOS pull-down network
 - pMOS pull-up network
 - a.k.a. static CMOS

<table>
<thead>
<tr>
<th></th>
<th>Pull-up OFF</th>
<th>Pull-up ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull-down OFF</td>
<td>Z (float)</td>
<td>1</td>
</tr>
<tr>
<td>Pull-down ON</td>
<td>0</td>
<td>X (crowbar)</td>
</tr>
</tbody>
</table>
Series and Parallel

- nMOS: $1 = \text{ON}$
- pMOS: $0 = \text{ON}$
- **Series**: both must be ON
- **Parallel**: either can be ON

\[\begin{array}{c}
\text{(a)} \\
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{g1} \\
\text{g2} \\
\text{b}
\end{array} \\
\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}
\end{array} \quad
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{a} \\
\text{a} \\
\text{a}
\end{array} \\
\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}
\end{array} \quad
\begin{array}{c}
\begin{array}{c}
\text{OFF} \\
\text{OFF} \\
\text{OFF} \\
\text{ON}
\end{array}
\end{array}
\end{array} \\
\begin{array}{c}
\text{(b)} \\
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{g1} \\
\text{g2} \\
\text{b}
\end{array} \\
\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}
\end{array} \quad
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{a} \\
\text{a} \\
\text{a}
\end{array} \\
\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}
\end{array} \quad
\begin{array}{c}
\begin{array}{c}
\text{ON} \\
\text{OFF} \\
\text{OFF} \\
\text{OFF}
\end{array}
\end{array}
\end{array} \\
\begin{array}{c}
\text{(c)} \\
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{g1} \\
\text{g2} \\
\text{b}
\end{array} \\
\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}
\end{array} \quad
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{a} \\
\text{a} \\
\text{a}
\end{array} \\
\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}
\end{array} \quad
\begin{array}{c}
\begin{array}{c}
\text{OFF} \\
\text{ON} \\
\text{ON} \\
\text{ON}
\end{array}
\end{array}
\end{array} \\
\begin{array}{c}
\text{(d)} \\
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{g1} \\
\text{g2} \\
\text{b}
\end{array} \\
\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}
\end{array} \quad
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{a} \\
\text{a} \\
\text{a}
\end{array} \\
\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}
\end{array} \quad
\begin{array}{c}
\begin{array}{c}
\text{ON} \\
\text{ON} \\
\text{ON} \\
\text{OFF}
\end{array}
\end{array}
\end{array}
\end{array} \]
Conduction Complement

- Complementary CMOS gates always produce 0 or 1
- Ex: NAND gate
 - Series nMOS: $Y=0$ when both inputs are 1
 - Thus $Y=1$ when either input is 0
 - Requires parallel pMOS

- Rule of *Conduction Complements*
 - Pull-up network is complement of pull-down
 - Parallel -> series, series -> parallel
Activity:
- Sketch a 4-input CMOS NOR gate
Compound Gates

- Compound gates can do any inverting function
- Ex: \(Y = A \cdot B + C \cdot D \) (AND-AND-OR-INVERT, AOI22)

(a) \[Y = A \cdot B + C \cdot D \]
(b) \[Y = A \cdot B + C \cdot D \]
(c) \[Y = A \cdot B + C \cdot D \]
(d) \[Y = A \cdot B + C \cdot D \]
(e) \[Y = A \cdot B + C \cdot D \]
(f) \[Y = A \cdot B + C \cdot D \]
Example: O3AI

\[Y = \overline{(A + B + C)} \cdot D \]
Signal Strength

- **Strength of signal**
 - How close it approximates ideal voltage source

- V_{DD} and GND rails are strongest 1 and 0

- nMOS pass strong 0
 - But degraded or weak 1

- pMOS pass strong 1
 - But degraded or weak 0

- Thus nMOS are best for pull-down network
Pass Transistors

- Transistors can be used as switches

\[g = 0 \]
\[s \rightarrow d \]
\[g = 1 \]
\[s \rightarrow d \]

\[g = 0 \]
\[s \rightarrow d \]
\[g = 1 \]
\[s \rightarrow d \]

\[g = 1 \quad \text{Input} \quad \text{Output} \]
\[0 \rightarrow \text{strong} \quad 0 \]
\[1 \rightarrow \text{degraded} \quad 1 \]

\[g = 0 \quad \text{Input} \quad \text{Output} \]
\[0 \rightarrow \text{degraded} \quad 0 \]
\[1 \rightarrow \text{strong} \quad 1 \]
Transmission Gates

- Pass transistors produce degraded outputs
- *Transmission gates* pass both 0 and 1 well

\[g = 0, \ gb = 1 \]
\[g = 1, \ gb = 0 \]

Input	Output
0 | strong 0 upper
1 | strong 1 lower
Tristates

- *Tristate buffer* produces Z when not enabled

<table>
<thead>
<tr>
<th>EN</th>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Nonrestoring Tristate

- Transmission gate acts as tristate buffer
 - Only two transistors
 - But *nonrestoring*
 - Noise on A is passed on to Y

\[
\text{EN} \quad \text{A} \quad \text{Y} \quad \text{EN}
\]
Tristate Inverter

- Tristate inverter produces restored output
 - Violates conduction complement rule
 - Because we want a Z output

\[
\begin{align*}
A & \quad \overline{EN} & \quad EN = 0 & \quad Y = 'Z' \\
A & \quad EN & \quad EN = 1 & \quad Y = \overline{A}
\end{align*}
\]
Multiplexers

- 2:1 multiplexer chooses between two inputs

<table>
<thead>
<tr>
<th>S</th>
<th>D1</th>
<th>D0</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Gate-Level Mux Design

- $Y = SD_1 + \bar{S}D_0$ (too many transistors)
- How many transistors are needed?
Transmission Gate Mux

- Nonrestoring mux uses two transmission gates
 - Only 4 transistors
Inverting Mux

- Inverting multiplexer
 - Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing

- Noninverting multiplexer adds an inverter
4:1 Multiplexer

- 4:1 mux chooses one of 4 inputs using two selects
 - Two levels of 2:1 muxes
 - Or four tristates
When CLK = 1, latch is **transparent**
- D flows through to Q like a buffer

When CLK = 0, the latch is **opaque**
- Q holds its old value independent of D

a.k.a. **transparent latch** or **level-sensitive latch**
D Latch Design

- Multiplexer chooses D or old Q

![D Latch Design Diagram]
D Latch Operation

CLK = 1

CLK = 0

D

Q

Q

CLK

D

Q

Q

CLK

D

Q
D Flip-flop

- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

![D Flip-flop Diagram]
D Flip-flop Design

- Built from master and slave D latches
D Flip-flop Operation

CLK = 0

CLK = 1

CLK

D

Q
Race Condition

- Back-to-back flops can malfunction from clock skew
 - Second flip-flop fires late
 - Sees first flip-flop change and captures its result
 - Called *hold-time failure* or *race condition*

![Diagram of CMOS VLSI Design](image-url)
Nonoverlapping Clocks

- Nonoverlapping clocks can prevent races
 - As long as nonoverlap exceeds clock skew
 - Industry manages skew more carefully

![Nonoverlapping Clocks Diagram]
Gate Layout

- Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts
Example: Inverter

(a) VDD

(b) GND

Well Tap

Substrate T

1: Circuits & Layout
CMOS VLSI Design 4th Ed.
29
Example: NAND3

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- 32 λ by 40 λ
Stick Diagrams

- *Stick diagrams* help plan layout quickly
 - Need not be to scale
 - Draw with color pencils or dry-erase markers
Wiring Tracks

- A *wiring track* is the space required for a wire
 - 4 λ width, 4 λ spacing from neighbor = 8 λ pitch
- Transistors also consume one wiring track

![Image of wiring tracks](image-url)
Well spacing

- Wells must surround transistors by 6λ
 - Implies 12λ between opposite transistor flavors
 - Leaves room for one wire track
Area Estimation

- Estimate area by counting wiring tracks
 - Multiply by 8 to express in \(\lambda \)
Example: O3Al

Sketch a stick diagram for O3Al and estimate area

\[Y = (A + B + C) \cdot D \]

- 6 tracks = 48 l
- 5 tracks = 40 l
Summary

- MOS Transistors are stack of gate, oxide, silicon
- Can be viewed as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors

- Next lecture:
 - A simple MIPS Microprocessor
 - Reading: 1.7-1.12