Now Entering

The Second Dimension!
2D Signal Processing

• Manipulation of samples of a bivariate function
 • \(f(x, y) \rightarrow f[n, m] \) or \(f[i, j] \) or \(x[n, m] \) or ???
 • Unfortunate namespace collision with usual function names \(x, y \)
 • Pick whatever you wish but just be consistent with your notation!
• All the usual 1D operations/theorems apply as usual along each dimension/axis
 • Sampling
 • Filtering
 • Rate changing
 • Interpolation
 • ...
• There are also true 2D extensions of the above!
2D Sampling

- Many more options in sampling patterns

- Regular / Square
- Rectangular
- Slanted / Skewed
- Hexagonal
Sampling and 2D Fourier Transforms

- 2D Fourier transform is cascade of transforms along each dimension
 - \(G(\Omega_x, \Omega_y) = F_y\{ F_x\{ g(x, y) \} \} \)
- The essential support of \(G(\Omega_x, \Omega_y) \) determines how it must be sampled

Square sampling based on \(\max(B_x, B_y) \)
• The better packed the spectra, the more efficient our sampling scheme is
 • Sampling efficiency = fewer samples = more performant algorithms!
• However, processing on non-rectangular lattices can be tricky
 • Unless there is an application-specific reason to do so, probably will be working with uniform sampling in both directions
2D Convolution

- Recall 1-D convolution
 - \(y[n] = \sum_m x[m] h[n - m] \)
- 2D Convolution is a multi-dimensional generalization of this
 - \(y[i, j] = \sum_m \sum_n x[m, n] h[i - m, j - n] \)
- \(h \) typically referred to as the filter kernel
- Same idea of a weighted average of elements over a sliding window
- Applications usually have entire 2D samples available, so “non-causal” \(h \) are typical
 - Centered, zero phase filters are also common
Separable Convolution

- h is defined as separable if it can be factored
 - $h[n, m] = h_x[n]h_y[m]$

- Rewrite convolution as cascade of 1D convolutions
 - $y[i, j] = \sum_m \sum_n x[m, n]h[i - m, j - n]$
 $$= \sum_m h_x[i - m] \sum_n x[m, n]h_y[j - n]$$

- Why is this advantageous? Computation! For an $N \times N$ filter
 - 2D convolution is N^2 multiply-accumulates
 - Separable convolution is 2 x 1D convolution for $2N$ multiply-accumulates
Image Processing

- Particular (exciting!) application of 2D signal processing is image processing
- Many different file types: BMP, JPG, PNG, TIF (among others)
- Typical images are
 - binary (0/1)
 - grayscale (single intensity value)
 - color (e.g. 3-channel RGB image, 4-channel RGBA)
‘Test’ images

- A number of classical images used in image processing papers
- Allow for quantitative and subjective comparison of different algorithms
Boundary Condition Handling

• Just as with 1D signals, we have to consider how to handle boundary conditions
 • How does signal behave outside sampled boundaries?

• Zero padding
 • Might not be a good option when working with images

• Constant extension

• Mirror extension

• Wrap-around extension

• Filter normalization

• How to pick? Mainly what makes ‘sense’ for your application
Convolution Output Domain

- Different varieties of output sets for 2D convolution
 - Valid - region where h does not go outside image boundary. Output size $N - K + 1$.
 - Same - same size as input image, requires handling of elements outside of image. Output size N.
 - Full - expanded output image by size of h, usually assumes zeros outside image, useful for ‘overlap-add’ type image block processing. Output size $N + K - 1$
Examples of Filters

- Original
- Sharpen
- Average
- Median
- Gaussian
- Trimmed Mean
Examples of Filters

- Numerical derivative filters

Original

∂x

∂y

Edge Map
Image Data Types

• Image processing provides some unique numerical processing challenges
• Bit depth (or dynamic range) of input (and likely output) spaces
 • Binary: 0/1
 • 8-Bit: 0-255
 • 16-Bit: 0-65535
 • Most images use 8-bit representation
• Integer values over that interval
• Very easy for algorithms to
 • Exceed dynamic range of data type
 • Use too narrow an interval of dynamic range and suffer degradation due to quantization noise
Processing Pixel Values

• Option 1: Keep in native data type
 • Similar difficultly to implementing fixed point algorithms
 • Unsigned datatypes can yield unexpected mathematical evaluations
 • \(a = 50, b = 30\)
 • \(2a - 4b = 236 \text{ ??} \quad 4a + 3b = 34 \text{ ??}\)
 • Can exceed maximum/minimum representable value if not careful
 • For convolution operations, can keep in native datatype without worry if all filter coefficients \(h[n,m] \geq 0\) and \(\sum_{n,m} h[n,m] \leq 1\)
 • Need careful analysis of algorithm to ensure proper operation
 • Intermediate values can suffer from this same problem!
Processing Pixel Values

• Option 2: Temporarily convert to working data type and convert back for output
 • Work with a more ‘natural’ domain (signed integers, floating point) so reduced impact on algorithm itself
 • For floating point, can map to [0, 1) and abstract algorithm with respect to input data type
 • Introduces cost of performing type conversions
 • Working domain datatype typically larger datatype, so more memory required
 • Throughput of operations on larger datatype typically lower as well
 • Still may have problems with output elements exceeding representable range
Conversion of Output Pixels

- Ideally our algorithm ‘behaves’ and keeps the output range within the dynamic range of the image pixel $[0, 2^B - 1]$
- If not, we have to map into that range in order to have a valid output image
- Some options: Clip/saturate, rescale/map, wrap-around (examples below with transform $f^2/100$)

![Original](image1.png) ![Clamp / Saturate](image2.png) ![Rescale](image3.png) ![Wrap](image4.png)
Histograms

- Histogram represents distribution of numerical data
- Each bin denotes a particular value / outcome (or range of values/outcomes)
- Number assigned to a bin is the count of observed occurrences of values for that bin
- For images, perform analysis over all pixels in the image
 - Creates statistical distribution of pixel intensities
 - Spatial information is discarded
Histogram Manipulation

- Manipulate pixel values to achieve desired modified histogram distribution
Histogram Equalization

- Histogram manipulation to leverage entire dynamic range of pixel values
- Define the cumulative distribution function
 \[C[x] = \sum_{t=0}^{x} h[t] \]
- Determine a warping function that maps pixel values in the input distribution to pixel values in the output distribution
 \[x_2 = W(x_1) \approx C_2^{-1}(C_1[x_1]) \]
- For a linear distribution in \(C_2 \)
 \[W(x_1) = \frac{C_1[x_1] - C_1[x_{\text{min}}]}{N^2 - C_1[x_{\text{min}}]} (2^B - 1) \]
Lab 6 Overview

- Implementation of real-time histogram equalization and 2D convolution
- Not both at the same time, user selectable
- Different filters can be chosen, can assume a 3x3 kernel
Working with Image Data

- Most high level languages define array/image objects
 - Simplifies algorithm implementation with explicit multi-dimensional indexing
 - Complicates algorithm implementation with possibly non-intuitive indexing conventions
 - Recommend create a small image with some landmark pixels to understand convention

- Lower level languages use a flat buffer
 - Explicit index calculations
 - \(\text{offset} = x + y \times \text{width} \)
 - Careful for buffer overrun!
RGB vs. YUV

- Color images are broken down into different bands of information
- “Traditional” representation is RGB
 - One channel each for red, green, and blue respectively
- Another common representation is YUV
 - Y - luminance
 - U,V - chrominance
- YUV provides a perception-based encoding
 - RGB mostly distributes information among all channels
 - YUV concentrates most information in Y channel
Android Handling of Color

- YUV420 encoding
 - U, V channels sampled at half the rate in x/y dimensions
 - U, V channels follow Y channel
- Since Y carries most of the information, we will just manipulate the Y channel alone (grayscale intensity map)
- Leaving U, V alone automatically ‘recolors’ the pixels
Many, Many Other Image Manipulations

- Segmentation
- Morphological operations
- Compositing
- Warping
- Rotation
- Denoising
- Compression
- Classification / Identification
- Feature Extraction
This week

- Lab 5: Pitch Synthesizer Quiz/Demo
- Lab 6: Image Processor (Histogram and Filtering)
- Assigned Project Lab Proposals Due March 1