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Consider the linear regression model that predict an output variable y as a linear combination
of input variables x1, x2, . . . , xK as

y(x,w) = w0 + w1x1 + . . .+ wKxK =
[
1 x1 x2 . . . xK

]︸ ︷︷ ︸
xT
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︸ ︷︷ ︸

w

, (1)

where w = [w0, w1, . . . , wK ]T contains the model parameters, including the bias w0; and x =
[1, x1, . . . , xK ]T contains the input variables, including the “dummy” variable x0 = 1 to account for
the bias.

Given a training data set comprising of N examples of input {xn}N−1
n=0 together with corre-

sponding target values {tn}N−1
n=0 , we want to find the best fitted linear regression y(x,w) as in (1)

to minimize the errors

en = y(xn,w)− tn = xT
nw − tn, for n = 0, 1, . . . , N − 1,

in the least-squares sense. That means we need to find the model parameters w to minimize the
following objective function

J(w) =
N−1∑
n=0

e2n =
N−1∑
n=0

(xT
nw − tn)2. (2)

We can stack the examples in the training data set and express the error and objective function
in the matrix form as 
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︸ ︷︷ ︸
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, (3)

and
J(w) = ‖e‖2 = ‖XTw − t‖2. (4)

Note that the matrix XT is of size N × (K + 1). Typically, the number of training samples N
is much bigger than the number of parameters (K + 1) in w that we need to recover. Once the
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parameters w are recovered, given a new sample input in x, we can estimate the corresponding
output y using (1).

In another application setting, suppose that we want to filter an input signal {xn} using an FIR
filter {wk}Kk=0 to produce an output that matches a desired signal {tn}. Let {yn} be the output of
the filter, we have

yn =

K∑
k=0

wkxn−k

=
[
xn xn−1 xn−2 . . . xn−K

]︸ ︷︷ ︸
xT
n
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︸ ︷︷ ︸

w

. (5)

We want to find the filter coefficients {wk}Kk=0 to minimize the error signal

en = yn − tn = xT
nw − tn

in the least-squares sense as in the linear regression problem above. Similarly, we can stack the
samples in matrix form as 
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︸ ︷︷ ︸
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︸ ︷︷ ︸

t

. (6)

Notice that with xT
n and XT defined as in (5) and (6), XT is the convolution matrix with

{x[n]}.
To minimize the objective function J(w) defined in (2), we can take the gradient and set it to

zero. Using the chain rule and noticing that the gradient of f(w) = xTw is ∇f(w) = x, we have

∇J(w) =
N−1∑
n=0

2(xT
nw − tn)xn

= 2
N−1∑
n=0

enxn

= 2Xe

= 2X(XTw − t). (7)

Here X is the transpose of XT defined as in (3), or

X =
[
x0 x1 . . . xN−1

]
.
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Therefore the least-squares filter w satisfies the following equation

XXTw = Xt. (8)

Thus,

w =
(
XXT

)−1
Xt. (9)

While (9) provides a closed-form formula for the desired least-squares linear regression or filter-
ing, sometimes it is not practical as it requires the delay, storage, and multiplication and inverse
with a big data matrix. To circumvent these issues, we can resort to the gradient-descent method
that iteratively refine an estimate of w in the steepest (i.e. negative gradient) direction:

wl+1 = wl −
µ

2
∇J(wl), for l = 0, 1, 2, . . . , (10)

where µ (µ > 0) is called the step size or learning rate.

Substituting the gradient from (7) to (10), we obtain the least-squares update:

wl+1 = wl − µX(XTwl − t)

= wl − µ
N−1∑
n=0

(xT
nwl − tn)xn. (11)

Sometimes computing the gradient in (11) is still too expensive or requires long delay for the
sum over N data samples. A further approximation is to replace the gradient sum over all data
samples to only over a small subset of samples, in particular using only one sample:

wl+1 = wl − µ(xT
l wl − tl)xl. (12)

This approximation is called stochastic gradient descent (SGD) method and the resulting update
(12) is the famous least mean squares (LMS) algorithm. SGD is the main training algorithm for
many current machine learning methods including deep learning. The key advantage of LMS is
that it can be used on-line and used adaptively. Each LMS iteration takes a new data sample xl

and produces a prediction based on the current model parameter wl as

t̂l = yl = xT
l wl.

Then based on the prediction error, the model parameter is updated according to (12) for the next
iteration and data sample. There is no need to wait for all training data to become available. As
a result, even if the underlying model parameter changes, the LMS update (12) can automatically
track this change and adapt the estimated model parameters accordingly.

The following Python script demonstrates the LMS algorithm.

import numpy as np

import matplotlib.pyplot as plt

from scipy import signal

%matplotlib inline

N = 400 # Input size

K = 31 # Filter size
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x = np.random.randn(N) # Input to the filter

h = signal.firwin(K, 0.5) # FIR system to be identified

t = signal.convolve(x, h) # Target output signal

t = t + 0.01 * np.random.randn(len(t)) # with added noise

mu = 0.05 # LMS step size

fig = plt.figure()

plt.title(’Unknown filter’)

plt.stem(h, ’r’)

w = np.zeros(K) # Initial filter

e = np.zeros(N-K)

for n in range(0, N-K):

xn = x[n+K:n:-1]

en = t[n+K] - np.dot(xn , w) # Error

w = w + mu * en * xn # Update filter (LMS algorithm)

e[n] = en # Record error

# Plot updated filter after each iteration

if (n % 50 == 0):

plt.figure()

plt.title(’Estimated filter at iteration %d’ % n)

plt.stem(w, ’b’)

plt.figure()

plt.title(’Error signal’)

plt.stem(e, ’b’)

Exercises

1. Run the above script and compare the estimated filter w with ground truth filter h. Try with
different filters h, including with different size and coefficients.

2. Run the script and comment on the convergence of the LMS algorithm with different values
of step size mu, including a negative value.
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