Convolutional Feature Maps

Elements of efficient (and accurate) CNN-based object detection

Kaiming He
Microsoft Research Asia (MSRA)
Overview of this section

• Quick introduction to convolutional feature maps
 • Intuitions: into the “black boxes”
 • How object detection networks & region proposal networks are designed
 • Bridging the gap between “hand-engineered” and deep learning systems

• Focusing on forward propagation (inference)
 • Backward propagation (training) covered by Ross’s section
Object Detection = What, and Where

- Recognition
 What?
- Localization
 Where?

- We need a building block that tells us “what and where”...
Object Detection = What, and Where

Convolutional:
sliding-window operations

Feature:
encoding “what”
(and implicitly encoding “where”)

Map:
explicitly encoding “where”
Convolutional Layers

- Convolutional layers are **locally connected**
 - A filter/kernel/window slides on the image or the previous map
 - The **position** of the filter explicitly provides information for localizing
 - Local spatial information w.r.t. the window is encoded in the channels
Convolutional Layers

- Convolutional layers share weights spatially: **translation-invariant**

 - **Translation-invariant**: a translated region will produce the same response at the correspondingly translated position

 - A local pattern’s convolutional response can be **re-used** by different candidate regions
Convolutional Layers

• Convolutional layers can be applied to images of any sizes, yielding proportionally-sized outputs.
HOG by Convolutional Layers

• Steps of computing HOG:
 • Computing image gradients
 • Binning gradients into 18 directions
 • Computing cell histograms
 • Normalizing cell histograms

• Convolutional perspectives:
 • Horizontal/vertical edge filters
 • Directional filters + gating (non-linearity)
 • Sum/average pooling
 • Local response normalization (LRN)

see [Mahendran & Vedaldi, CVPR 2015]

HOG, dense SIFT, and many other “hand-engineered” features are convolutional feature maps.
Feature Maps = features and their locations

Convolutional: sliding-window operations

Feature:
encoding "what"
(and implicitly encoding "where")

Map:
explicitly encoding "where"
Feature Maps = features and their locations

ImageNet images with strongest responses of this channel

one feature map of conv$_5$
(#55 in 256 channels of a model trained on ImageNet)

Intuition of this response:
There is a “circle-shaped” object (likely a tire) at this position.

What

Where

Feature Maps = features and their locations

ImageNet images with strongest responses of this channel

Intuition of this response:
There is a “λ-shaped” object (likely an underarm) at this position.

What

Where

Feature Maps = features and their locations

• Visualizing one response (by Zeiler and Fergus)

image → a feature map → keep one response (e.g., the strongest) → ?
Feature Maps = features and their locations

![Visualizing one response](image credit: Zeiler & Fergus)

conv3
Feature Maps = features and their locations

Visualizing one response

Intuition of this visualization:
There is a “dog-head” shape at this position.

- Location of a feature: explicitly represents where it is.
- Responses of a feature: encode what it is, and implicitly encode finer position information – finer position information is encoded in the channel dimensions (e.g., bbox regression from responses at one pixel as in RPN)

Receptive Field

- Receptive field of the first layer is the filter size.
- Receptive field (w.r.t. input image) of a deeper layer depends on all previous layers’ filter size and strides.

- Correspondence between a feature map pixel and an image pixel is not unique.
- Map a feature map pixel to the center of the receptive field on the image in the SPP-net paper.

Receptive Field

How to compute the center of the receptive field

• A simple solution
 • For each layer, pad $\lfloor F/2 \rfloor$ pixels for a filter size F
 (e.g., pad 1 pixel for a filter size of 3)
 • On each feature map, the response at $(0, 0)$ has a receptive
 field centered at $(0, 0)$ on the image
 • On each feature map, the response at (x, y) has a receptive
 field centered at (Sx, Sy) on the image (stride S)

• A general solution

$$i_0 = g_L(i_L) = \alpha_L(i_L - 1) + \beta_L,$$

$$\alpha_L = \prod_{p=1}^{L} S_p,$$

$$\beta_L = 1 + \sum_{p=1}^{L} \left(\prod_{q=1}^{p-1} S_q \right) \left(\frac{F_p - 1}{2} - P_p \right).$$

See [Karel Lenc & Andrea Vedaldi]
Region-based CNN Features

input image

region proposals
~2,000

warped region

1 CNN for each region

classify regions

R-CNN pipeline

Region-based CNN Features

- Given proposal regions, what we need is a feature for each region.
- R-CNN: cropping an image region + CNN on region, requires 2000 CNN computations.
- What about cropping feature map regions?
Regions on Feature Maps

- Compute convolutional feature maps on the entire image only once.
- Project an image region to a feature map region (using correspondence of the receptive field center)
- Extract a region-based feature from the feature map region...
Regions on Feature Maps

• **Fixed-length** features are required by fully-connected layers or SVM
• But how to produce a fixed-length feature from a feature map region?
• Solutions in traditional computer vision: Bag-of-words, SPM...

Bag-of-words & Spatial Pyramid Matching

SIFT/HOG-based feature maps

Bag-of-words
[J. Sivic & A. Zisserman, ICCV 2003]

Spatial Pyramid Matching (SPM)
[K. Grauman & T. Darrell, ICCV 2005]
[S. Lazebnik et al, CVPR 2006]

figure credit: S. Lazebnik et al.
Spatial Pyramid Pooling (SPP) Layer

- fix the number of bins (instead of filter sizes)
- adaptively-sized bins

A finer level maintains explicit spatial information

A coarser level removes explicit spatial information (bag-of-features)

Concatenate, fc layers...

Spatial Pyramid Pooling (SPP) Layer

- Pre-trained nets often have a single-resolution pooling layer (7x7 for VGG nets)
- To adapt to a pre-trained net, a “single-level” pyramid is useable
- Region-of-Interest (RoI) pooling [R. Girshick, ICCV 2015]

Concatenate, fc layers...
Single-scale and Multi-scale Feature Maps

• Feature Pyramid
 • Resize the input image to multiple scales
 • Compute feature maps for each scale
 • Used for HOG/SIFT features and convolutional features (OverFeat [Sermanet et al. 2013])

Single-scale and Multi-scale Feature Maps

- But deep convolutional feature maps perform well at a single scale

<table>
<thead>
<tr>
<th></th>
<th>SPP-net 1-scale</th>
<th>SPP-net 5-scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>pool5</td>
<td>43.0</td>
<td>44.9</td>
</tr>
<tr>
<td>fc6</td>
<td>42.5</td>
<td>44.8</td>
</tr>
<tr>
<td>fine-tuned fc6</td>
<td>52.3</td>
<td>53.7</td>
</tr>
<tr>
<td>fine-tuned fc7</td>
<td>54.5</td>
<td>55.2</td>
</tr>
<tr>
<td>fine-tuned fc7 bbox reg</td>
<td>58.0</td>
<td>59.2</td>
</tr>
<tr>
<td>conv time</td>
<td>0.053s</td>
<td>0.293s</td>
</tr>
<tr>
<td>fc time</td>
<td>0.089s</td>
<td>0.089s</td>
</tr>
<tr>
<td>total time</td>
<td>0.142s</td>
<td>0.382s</td>
</tr>
</tbody>
</table>

- Also observed in Fast R-CNN and VGG nets
- Good speed-vs-accuracy tradeoff
- Learn to be scale-invariant from pre-training data (ImageNet)
- (note: but if good accuracy is desired, feature pyramids are still needed)

detection mAP on PASCAL VOC 2007, with ZF-net pre-trained on ImageNet
this table is from [K. He, et al. 2014]
R-CNN vs. Fast R-CNN (forward pipeline)

R-CNN
- Extract image regions
- 1 CNN per region (2000 CNNs)
- Classify region-based features

SPP-net & Fast R-CNN (the same forward pipeline)
- 1 CNN on the entire image
- Extract features from feature map regions
- Classify region-based features

R-CNN vs. Fast R-CNN (forward pipeline)

R-CNN
- Complexity: \(\sim 224 \times 224 \times 2000\)

SPP-net & Fast R-CNN (the same forward pipeline)
- Complexity: \(\sim 600 \times 1000 \times 1\)
- \(\sim 160\times \text{faster} \) than R-CNN

Region Proposal from Feature Maps

• Object detection networks are fast (0.2s)...
• but what about region proposal?
 • Selective Search [Uijlings et al. ICCV 2011]: 2s per image
 • EdgeBoxes [Zitnick & Dollar. ECCV 2014]: 0.2s per image

• Can we do region proposal on the same set of feature maps?
Feature Maps = features and their locations

Convolutional: sliding-window operations

Feature:
- encoding “what”
 (and implicitly encoding “where”)

Map:
- explicitly encoding “where”
Region Proposal from Feature Maps

- By decoding one response at a single pixel, we can still roughly see the object outline*
- Finer localization information has been encoded in the channels of a convolutional feature response
- Extract this information for better localization...

* Zeiler & Fergus’s method traces unpooling information so the visualization involves more than a single response. But other visualization methods reveal similar patterns.
Region Proposal from Feature Maps

• The spatial position of this feature vector provides coarse locations.

• The channels of this feature vector encodes finer localization information.

image

feature map

a feature vector
(e.g., 256-d)

Region Proposal Network

• Slide a small window on the feature map

• Build a small network for:
 • classifying object or not-object, and
 • regressing bbox locations

• Position of the sliding window provides localization information with reference to the image

• Box regression provides finer localization information with reference to this sliding window

Anchors as references

- **Anchors**: pre-defined reference boxes
 - Box regression is with reference to anchors: regressing an anchor box to a ground-truth box

- Object probability is with reference to anchors, e.g.:
 - anchors as positive samples: if IoU > 0.7 or IoU is max
 - anchors as negative samples: if IoU < 0.3

Anchors as references

• **Anchors**: pre-defined reference boxes

• **Translation-invariant anchors**:
 • the same set of anchors are used at each sliding position
 • the same prediction functions (with reference to the sliding window) are used
 • a translated object will have a translated prediction
Anchors as references

- **Anchors**: pre-defined reference boxes

- **Multi-scale/size anchors**:
 - multiple anchors are used at each position: e.g., 3 scales (128², 256², 512²) and 3 aspect ratios (2:1, 1:1, 1:2) yield 9 anchors
 - each anchor has its own prediction function
 - single-scale features, multi-scale predictions

Anchors as references

• Comparisons of multi-scale strategies

Image/Feature Pyramid

Filter Pyramid

Anchor Pyramid

Region Proposal Network

- **RPN is fully convolutional** [Long et al. 2015]
- **RPN is trained end-to-end**
- **RPN shares** convolutional feature maps with the detection network (covered in Ross’s section)

Faster R-CNN

<table>
<thead>
<tr>
<th>system</th>
<th>time</th>
<th>07 data</th>
<th>07+12 data</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-CNN</td>
<td>~50s</td>
<td>66.0</td>
<td>-</td>
</tr>
<tr>
<td>Fast R-CNN</td>
<td>~2s</td>
<td>66.9</td>
<td>70.0</td>
</tr>
<tr>
<td>Faster R-CNN</td>
<td>198ms</td>
<td>69.9</td>
<td>73.2</td>
</tr>
</tbody>
</table>

detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet

Example detection results of Faster R-CNN
Keys to efficient CNN-based object detection

• Feature sharing
 • R-CNN => SPP-net & Fast R-CNN: sharing features among proposal regions
 • Fast R-CNN => Faster R-CNN: sharing features between proposal and detection
 • All are done by shared convolutional feature maps

• Efficient multi-scale solutions
 • Single-scale convolutional feature maps are good trade-offs
 • Multi-scale anchors are fast and flexible
Conclusion of this section

• Quick introduction to convolutional feature maps
 • Intuitions: into the “black boxes”
 • How object detection networks & region proposal networks are designed
 • Bridging the gap between “hand-engineered” and deep learning systems

• Focusing on forward propagation (inference)
 • Backward propagation (training) covered by Ross’s section