Outline (Part 1)

- Definitions and Examples
- Hardware Engineering Challenges
- Embedded Processor Examples
 - TI MSP430F2001
 - TI OMAP DM3730
 - Atmel ATtiny4
 - Xilinx FPGAs/MicroBlaze/Zynq
 - Microsemi IGLOO FPGA
- Closing Comments
- Preview of Part 2 (April 25th)
Embedded System
Historical Definition

- A dedicated computer performing a specific function as a part of a larger system

- Saw commercial use beginning in the 1970s as an alternative to hard-wired control and logic circuitry (engine controls, guidance systems, industrial process controllers)

- Essential Goal: Turn hardware problems into software problems.
Embedded System
Modern Definition

• High-reliability systems operating in a resource-constrained environment (typically cost, space & power)

• Excludes general-purpose computers, and non-computerized devices (now rare!)

• Often applied to mobile computing due to similarity in requirements, although not "embedded" *per se*
No externally-visible difference between hardware and software functions

Well-defined, fundamental, and extremely performance-sensitive functions are generally implemented in hardware.

Complex, non-performance-sensitive, and/or likely-to-change functions are generally implemented in software.
Embedded Systems
Examples

Consumer
Cellular Handsets
Game Consoles
Media Players
TV Set-Top Boxes
Kitchen Appliances

Vehicular
Engine Control
Driveline Control
Anti-Lock Braking
GPS Receivers
Tire monitoring
Entertainment

Infrastructure
Utility meters
Traffic signal control
Structure monitoring
Surveillance
HVAC control
Parking meters
Battery Management
Generator controls
Pipeline Safety

Medical
Pacemakers
Measurement
Drug Delivery

Industry
PLCs
Motor Control
Process Control

Defense
Vision Enhancers
Communications
UAV Systems

Computing
(computers within computers!)
Ford EEC
"Old School"

• EEC-I (1978, about same time as Apple II)
 Proprietary 12-bit processor @ 3 MHz
 "PM-11" after the DEC PDP-11
 4K bytes of ROM, 256 bytes of RAM
 Ignition timing, EGR valve & smog pump

• EEC-IV (1983 through 1990s)
 Intel 8061 8/16 bit processor @ 15 MHz
 8K bytes of ROM, 256 bytes of RAM
 Controlled 8 vehicle functions
Old School (Ford Motor Co. EEC)
“Megasquirt”
Open Source Fuel Injection Controller

Injector Driver transistors, power resistors, main voltage regulator, cts mounted on heat sink bar

Main I/O connector

Crank Sensor trigger level adjustments
Ignition optoisolaters

Main Processor

Custom 74HCT123
IBGT V8921 Transistor driver circuits

Function Display
LEDs
PG comm port

www.megasquirt.info
Automotive Trends
ECUs/vehicle, 2016

- Economy: 20+
- Volume Luxury: 50+
- Ultra Luxury: 100+

Communication via CANBus, Ethernet, wireless and other networks

After engine and transmission, the 3rd heaviest component in a modern automobile is the wiring harness
"Turn hardware problems into software problems"...a lot of software problems.

Lockheed Martin F-35 Lightning II: 30 million LOC

2017 Ford F-150, as per a claim made at the 2016 CES:
"Turn hardware problems into software problems"...a lot of software problems.

- Lockheed Martin F-35 Lightning II: 30 million LOC
- 2017 Ford F-150, as per a claim made at the 2016 CES: 150 million LOC
DJI NAZA-M v2
UAV Flight Controller

- 32-bit DSP, GPS, compass, gyro, power management, external LED driver, etc.
- Up to 8 rotors; street price $300
Engineering Challenges

Constraints typical in many ES designs

- **Form Factor**
 (size, shape, weight)
- **Environment**
 (shock, vibration, temperature, moisture, radiation, RF)
- **Power**
 (battery life, heat dissipation, surges)

Reliability, Security, Safety

- Failures may cause injuries or property damage
- Mission critical but often inaccessible

Cost

$ (or ¢!)
• **Space Limitations**
 Enclosure design often drives hardware design
 Highly-integrated chips minimize parts count
 (if you can turn off what you don’t need!)

• Close collaboration with Mechanical Engineers is critical to project success

• 3D Printing/Rapid Prototyping gets better every day, and can avoid costly mistakes later in production
Exotic PCB materials and techniques may be required
 Flexible circuits
 Very fine feature sizes
 Via-in-pad, laser-drilled microvias

Tiny SMT devices, BGAs, etc. save space, but watch ratings, manufacturability and rework issues

(01005 is really small, and it's tough to solder that kludge wire dead-center under a BGA package...)

Hardware Challenges
Form Factor
Hardware Challenges
Environment

- Exotic PCB materials and techniques again
 - High-temperature/pressure substrates (there's a reason FR-4 is cheap)
 - Conformal coating (moisture, Pb-free Sn whiskers)

- "Shake and Bake"
 - Shock Mounting
 - Ingress Prevention (IP-xx standards)
Electromagnetic Compatibility (EMC)

Emission:
Your device makes other devices not work

Susceptibility:
Other devices make your device not work

• Both are bad

• Requires careful attention to electronic and mechanical design to ensure compliance
Hardware Challenges

Power

• Minimize power consumption for...
 Battery life (per-charge and lifetime)
 Heat Dissipation
 Operating Cost

• Designing for Power Management
 (Not just a 5V rail and ground!)
 Many individually switchable power domains
 Integrated current and voltage monitoring
 Voltage and clock speed scaling
Hardware Challenges

Power

- Not just "off" and "on"
 Low-power sleep modes
 Wake-up receivers, Bluetooth Low Energy, etc.
 Challenge: naming all the power modes!

- Beware of battery-draining "sneak paths"
 "Disabled" or "shut down" doesn't mean "off"
 Check those data sheets!

- External power has its own problems; design for and test extreme cases (surges, undervoltage, cranking)
For critical applications, redundant systems with a "computer third party" to disable failing units.

Power-On Self Test (POST) capabilities, self-diagnostics, system health reporting.

Predict how systems may fail (risk assessment, fault tree analysis, etc.)

Minimize effects ("fail in the right direction")
- Recover from software failures by using "watchdog" timers to restart after a crash.
- Authentication and/or encryption to prevent or detect tampering with soft components.
- Wireless or Internet-connected systems require added attention to security issues.
- Audit and manage supply/manufacturing chain to ensure authenticity and quality of components.
"To define it rudely but not inaptly, engineering is the art of doing that well with one dollar, which any bungler can do with two after a fashion."

--Arthur Mellen Wellington, c. 1887
Hardware Architecture
Embedded Processors

• Architecture Options for Every Design
 8-, 16-, 32-, 64-bit
 Optional floating-point, memory management

• High Integration
 Dedicated on-chip peripherals and coprocessors
 Minimizing chip count speeds design, saves power

• Complex, powerful power management
 Separate core, I/O, peripheral power
 Multiple low-power sleep/standby modes
 Companion PMICs for higher-end devices
Hardware Architecture
Embedded Processors

- **Sophisticated Timing**
 - Accurate interval timing for realtime performance
 - Fast wake-up time
 - Very low power timers
 - Watchdog timers to recover after failures

- **Pin Multiplexing**
 - Driving pins may be much of a chip’s power budget
 - Multiplex out test signals, unused chip functions
TI MSP430F2001
Block Diagram

16-bit embedded CPU with Flash, Comparator, 10 I/O Lines, Serial Port
Low Performance, Low Price ($0.50)
TI MSP430F2001
Form Factor

14-pin TSSOP or 16-pin PQFP, 0.25 cm²

Software configurable pinout (up to 5 choices for some pins)

JTAG support for in-circuit testability

(Dozens of other designs available)
The following six operating modes can be configured by software:

- **Active mode AM**;
 - All clocks are active
- **Low-power mode 0 (LPM0)**;
 - CPU is disabled
 - ACLK and SMCLK remain active. MCLK is disabled
- **Low-power mode 1 (LPM1)**;
 - CPU is disabled
 - ACLK and SMCLK remain active. MCLK is disabled
 - DCO’s dc-generator is disabled if DCO not used in active mode
- **Low-power mode 2 (LPM2)**;
 - CPU is disabled
 - MCLK and SMCLK are disabled
 - DCO’s dc-generator remains enabled
 - ACLK remains active
- **Low-power mode 3 (LPM3)**;
 - CPU is disabled
 - MCLK and SMCLK are disabled
 - DCO’s dc-generator is disabled
 - ACLK remains active
- **Low-power mode 4 (LPM4)**;
 - CPU is disabled
 - ACLK is disabled
 - MCLK and SMCLK are disabled
 - DCO’s dc-generator is disabled
 - Crystal oscillator is stopped
TI MSP430F2001
Software Environment

• 16-MHz MSP430 Processor Core
 1,280 bytes of flash, 128 bytes of RAM
 Small assembly or C programs
 “Bare metal” (no operating system)

 Typical applications:
 Utility metering
 Simple portable medical devices
 Sensor networks
TI MSP430F2001
Comparables

ENIAC, circa 1946
Aberdeen Proving Ground, Maryland
TI OMAP DM3730

Overview

Embedded CPU with ARM, DSP cores

“Kitchen Sink” onboard peripheral set
video display interface and acceleration
camera interface
high speed serial interfaces
multiple USB interfaces
optimized for smartphone handsets

JTAG interface for debugging

High Performance = High Price ($35)
TI OMAP DM3730 Block Diagram

OMAP Applications Processor

IVA 2.2 Subsystem
TMS320DM64x+ DSP Imaging Video and Audio Processor
32K/32K L1S
48K L1D RAM
64K L2S
32K L2 RAM
16K L2 ROM
Video Hardware Accelerators

MPU Subsystem
ARM Cortex-A8m Core
16K/16K L1S

POWERVR SGX™ Graphics Accelerator (3530 only)
L2S 256K

32 Channel System DMA

Dual Output 3-Layer Display Processor (1xGraphics, 2xVideo)
Temporal Dithering SDTV → QCIF Support

Camera (Parallel)
L3 Interconnect Network-Hierarchical, Performance, and Power Driven

CVBS or S-Video
Camera ISP Image Capture Hardware Image Pipeline and Preview
HS USB Host (with USB TTL) HS USB OTG

L3 Interconnect

64K On-Chip RAM
2KB Public/62KB Secure

112K On-Chip ROM
80KB Secure/32KB BOOT

SMS: SDRAM Memory Scheduler/Rotation

GPMC: General Purpose Memory Controller
NAND/NOR Flash, SRAM

SDRC: SDRAM Memory Controller

External and Stacked Memories

Emulation
Debug: SDTI, ETM, JTAG, Coresight™ DAP

System Controls
PRCM
2xSmartReflex™ Control Module

External Peripherals Interfaces

Peripherals:
3xUART, 3xHigh-Speed I2C,
5x McBSP
(2x with Sidetone/Audio Buffer)
4xMcSPI, 6xGPIO,
3xHigh-Speed MMC/SDIO,
HDC/1 Wire,
2xMailboxes
12xGPTimers, 2xWDT,
32k Sync Timer
TI OMAP DM3730
Form Factor

515-pin Ball Grid Array (BGA), 1 cm

347 pins on bottom, 168 pins on top for P-O-P memory chip

Software configurable pinout (up to 8 choices for some pins)
TI OMAP DM3730

Power Management

9 Top Level Power Domains with independent supplies

PRCM (Power, Reset and Clock Module) "brain stem" can turn domains on and off

"SmartReflex" power and clock speed scaling

Up to 2W fully active; a few mW in standby modes

Companion power management chip (TPS65960) contains multiple power regulators, battery charger support, etc.
TI OMAP DM3730
Software Environment

- ARM Cortex A8 Processor
 Full memory management
 Linux main-line kernel tree support
 Supervisory and User Interface functions

- TMS320C64x DSP Core
 Access to private and system memory and I/O
 Supervised by ARM, but autonomous
 Dedicated DSP functions

- Task: Maximize efficiency by intelligent allocation of functions among ARM and DSP
Atmel ATtiny4
8-bit CPU in SOT-23

- Atmel ATtiny4
 6 pins, 512b flash, $0.44
 200uA @ 1.8V (active)
 25uA @ 1.8V (idle)
 0.1uA @ 1.8V (power-down)
FPGA Technology

- Field Programmable Gate Array
- “Grab Bag” of hardware on a single chip
- Configures itself on power-up, usually from a specialized low-cost serial FLASH memory
- Often used as a “front end” to reduce CPU processing demand or pin count

Xilinx (www.xilinx.com)
Altera (www.altera.com)
FPGA Technology (continued)

- Powerful design tools generate FPGA “code” using software-like descriptions in Hardware Description Languages (VHDL, Verilog)
- Designs can be extensively simulated
- Designs can be converted into ASICs (Application Specific Integrated Circuit) for lower cost in very high volume products
Many hardware functions can be purchased as IP (intellectual property) "Cores"--FPGA code that can be securely dropped into an existing FPGA design. (Audio/video codecs, network communication, radio modulation/demodulation, encryption/decryption…)

The third-party marketplace for FPGA intellectual property has created a means to monetize hardware design innovations without having to build hardware
FPGA Technology (continued)

- A “Soft Core” CPU and peripherals can be implemented on an FPGA
- Some CPU architectures are available as IP (intellectual property)--VHDL or Verilog code
- IP also available for complicated I/O tasks (USB, FireWire, Ethernet, audio and video encoding/decoding, memory controllers, etc.)
- True single-chip solution for some systems
Xilinx MicroBlaze™
Soft-Core Processor

- Implemented on a Xilinx FPGA
- Any combination of standard, custom or user-modified peripherals
- Shares FPGA with other user-defined hardware

Altera’s Nios II is comparable
Xilinx MicroBlaze™ On Spartan-3E FPGA

- Spartan XC3S1600E ($80 in Q1K)
 - 376-pin BGA package (23mm x 23mm)
 - 33,192 “Logic Cells” (4-input LUTs)
 - 36 dedicated multipliers
 - 36 4K-byte RAM blocks
- MicroBlaze core itself uses ~1,000 LUTs
- Peripherals use additional space
 - Parallel port (23), Ethernet (1,800)
- Typical instance is ~25% of a 1600E, 75% remaining for user hardware
Xilinx MicroBlaze™
On Spartan-6 FPGA

- Spartan-6 LX and LXT Series
 144 to 900 pins (8x8mm to 31x31 mm)
 3,800 to 147,000 Logic Cells (LUTs)
 $10-$320 (Q1K)

- Some units have PCI Express endpoints, multi-gigabit SerDes, DDR3 controller)

- Footprint compatibility for scalability (same board layout, different chips)
Microsemi* Igloo Nano
Ultra low-power FPGA

• Range of form factors
 36 to 100 pins (3x3 mm to 14x14 mm)
 260 to 6,144 “VersaTiles” (D flip-flops)
 $4-$15

• Self-configuring from onboard Flash

• As low as 1.2V power supply

• 2 uW standby power in “freeze mode”

*formerly Actel
Microsemi Igloo Nano
Ultra low-power FPGA

- No-cost, Royalty-Free Processor Cores

 CoreABC: Very simple, programmed in assembly language, internal memory

 Core8051, CoreM1: More complex, programmed in C, external memory

 APB Bus: Lots of peripherals (UART, SPI, I2C, GPIO, Timers, 10/100 Ethernet, etc.)
Microsemi Igloo Nano Starter Kit ($99)
Soft Core Processors
Practical Considerations

- Since everything is “soft,” hardware design is greatly simplified—some designs are virtually single-chip
- Highly scalable—runs on FPGAs from $5 to $5,000 depending on peripheral requirements
- Slower than comparably-priced hard core processors, but custom peripherals can speed up some tasks
- For increased performance, consider hybrids: FPGAs with onboard hard core processors, or onboard hard core peripherals (e.g., gigabit Ethernet or MPEG-4)
- Makes fast-track design even faster--can make “hardware” changes without changing hardware
Xilinx Zynq
Hybrid FPGA

• "PS" (Processor Subsystem): 2 ARM Cortex-A9 processors and a lot of useful peripherals

• "PL" (Programmable Logic): Configurable FPGA logic blocks (multiple sizes available)

• Standard buses connecting PS and PL; interrupts

• Some I/O pins accessible directly by PS, so can be used prior to loading FPGA bitstream

• Best of both worlds (for some designs)
Xilinx Zynq-7000
Hybrid FPGA
Embeded systems are found in almost all product areas due to the power of being able to combine hardware and software in the most appropriate way to solve a given problem.

ES present significant engineering challenges in terms of physical design, environment, power, reliability, security, safety and cost.

Developing embedded systems requires balancing many competing factors.

Many specialized processors and support chips are optimized specifically for embedded applications.
Part 2 Preview

- Software challenges in Embedded Systems
- Key decisions in ES software development
- ARM and DSP Architectures
- Low-cost ES Prototyping Platforms
- Trends and opportunities in the ES industry