UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Spring 2016

EXAM 1

Thursday, February 25, 2016

- This is a CLOSED BOOK exam. You may use one sheet (front and back) of handwritten notes.
- No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
Total	

Name: \qquad
\qquad

Possibly Useful Formulas

Z transform/DTFT

$$
X(z)=\mathcal{Z}\{x[n]\}=\sum_{n=-\infty}^{\infty} x[n] z^{-n}, \quad x[n]=\mathcal{Z}^{-1}\{X(z)\}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

Convolution

$$
x[n] * h[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

DFT

$$
X[k]=\operatorname{DFT}\{x[n]\}=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N}, \quad x[n]=\operatorname{DFT}^{-1}\{X[k]\}=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N}
$$

Frequency Conversion: Hertz (f) to $\operatorname{Mel}(m)$

$$
m=G \ln (1+f / 700), \quad G \equiv \frac{1000}{\ln (1+1000 / 700)}
$$

Z-Transform/DTFT Pairs	
$h[n]$	$H\left(e^{j \omega}\right)$
$\frac{\sin \omega_{c} n}{\pi n}$	$H(\omega)=\left\{\begin{array}{cl}1 & \|\omega\|<\omega_{c} \\ 0 & \text { otherwise } \\ u[n]-u[n-N] & e^{-j \frac{\omega(N-1)}{2}} \frac{\sin (\omega N / 2)}{\sin (\omega / 2)} \\ \delta[n-\tau] & e^{-j \omega \tau} \\ e^{j \alpha n} & 2 \pi \delta(\omega-\alpha) \\ \sum_{\ell=-\infty}^{\infty} \delta\left[n-\ell T_{0}\right] & \left(\frac{2 \pi}{T_{0}}\right) \sum_{k=1}^{T_{0}-1} \delta\left(\omega-\frac{2 \pi k}{T_{0}}\right) \\ \hline\end{array} \mathrm{l}\right.$

Useful Angles			
θ	$\cos \theta$	$\sin \theta$	$e^{j \theta}$
0	1	0	1
$\pi / 6$	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3} / 2+j / 2$
$\pi / 4$	$\sqrt{2} / 2$	$\sqrt{2} / 2$	$\sqrt{2} / 2+j \sqrt{2} / 2$
$\pi / 3$	$1 / 2$	$\sqrt{3} / 2$	$1 / 2+j \sqrt{3} / 2$
$\pi / 2$	0	1	j
π	-1	0	-1
$3 \pi / 2$	1	-1	$-j$
2π	1	0	1

