UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Department of Electrical and Computer Engineering

ECE 417 MULTIMEDIA SIGNAL PROCESSING Spring 2016

EXAM 1

Thursday, February 25, 2016

- This is a CLOSED BOOK exam. You may use one sheet (front and back) of handwritten notes.
- \bullet No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
Total	

Name:			

Possibly Useful Formulas

Z transform/DTFT

$$X(z) = \mathcal{Z}\left\{x[n]\right\} = \sum_{n=-\infty}^{\infty} x[n]z^{-n}, \qquad x[n] = \mathcal{Z}^{-1}\left\{X(z)\right\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X\left(e^{j\omega}\right) e^{j\omega n} d\omega$$

Convolution

$$x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$

DFT

$$X[k] = \text{DFT} \{x[n]\} = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}, \quad x[n] = \text{DFT}^{-1} \{X[k]\} = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j2\pi kn/N}$$

Frequency Conversion: Hertz (f) to Mel (m)

$$m = G \ln(1 + f/700), \quad G \equiv \frac{1000}{\ln(1 + 1000/700)}$$

Z-Transform/DTFT Pairs			
h[n]	$H(e^{j\omega})$		
$\frac{\sin \omega_{\scriptscriptstyle C} n}{\pi n}$	$H(\omega) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \text{otherwise} \end{cases}$		
u[n] - u[n-N]	$e^{-j\frac{\omega(\tilde{N}-1)}{2}\frac{\sin(\omega N/2)}{\sin(\omega/2)}}e^{-j\omega\tau}$		
$\delta[n-\tau] = e^{j\alpha n}$	$e^{-j\omega au}$		
$e^{j\alpha n}$	$2\pi\delta(\omega-lpha)$		
$\sum_{\ell=-\infty}^{\infty} \delta[n - \ell T_0]$	$\left(\frac{2\pi}{T_0}\right) \sum_{k=1}^{T_0-1} \delta\left(\omega - \frac{2\pi k}{T_0}\right)$		

Useful Angles				
θ	$\cos \theta$	$\sin \theta$	$e^{j\theta}$	
0	1	0	1	
$\pi/6$	$\sqrt{3}/2$	1/2	$\sqrt{3}/2 + j/2$	
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	$\sqrt{2}/2 + j\sqrt{2}/2$	
$\pi/3$	1/2	$\sqrt{3}/2$	$1/2 + j\sqrt{3}/2$	
$\pi/2$	0	1	$\mid j \mid$	
π	-1	0	-1	
$3\pi/2$	1	-1	-j	
2π	1	0	1	