UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Department of Electrical and Computer Engineering

ECE 417 MULTIMEDIA SIGNAL PROCESSING Spring 2016

EXAM 3

Thursday, May 12, 2016, 7:00-10:00pm

- This is a CLOSED BOOK exam. You may use one sheet (front and back) of hand-written notes.
- No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
Total	

Name:

Possibly Useful Formulas

One-Layer Neural Network

$$f_k(\vec{x}_i, W) = g\left(\sum_{j=1}^q w_{kj} x_{ji}\right)$$

Barycentric Coordinates

$$\begin{bmatrix} x_0 \\ y_0 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix}$$

Bilinear Interpolation

$$i(m+e,n+f) = (1-e)(1-f)i(m,n) + (1-e)fi(m,n+1) + e(1-f)i(m+1,n) + efi(m+1,n+1) + efi(m+1,n+1)$$

Integral Image

$$ii(x,y) = \sum_{x' \le x} \sum_{y' \le y} i(x',y')$$

AdaBoost

$$p_{it} \leftarrow \frac{w_{it}}{\sum_{j=1}^{n} w_{jt}}, \quad 1 \le t \le T, \ 1 \le i \le n$$

$$P_E(t) = \sum_{i=1}^{n} p_{it} \left[y_i \ne h_t(\vec{x}_i) \right], \quad 1 \le t \le T, \ 1 \le i \le n$$

$$\beta_t = P_E(t) / (1 - P_E(t)), \quad 1 \le t \le T$$

$$w_{i,t+1} \leftarrow \begin{cases} w_{it}\beta_t & h_t(\vec{x}_i) = y_i \\ w_{it} & h_t(\vec{x}_i) \ne y_i \end{cases}, \quad 1 \le t \le T, \ 1 \le i \le n$$

$$\alpha_t = -\ln \beta_t, \quad 1 \le t \le T$$

Useful Angles			
θ	$\cos \theta$	$\sin \theta$	$e^{j\theta}$
0	1	0	1
$\pi/6$	$\sqrt{3}/2$	1/2	$\sqrt{3}/2 + j/2$
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	$\sqrt{2}/2 + j\sqrt{2}/2$
$\pi/3$	1/2	$\sqrt{3}/2$	$1/2 + j\sqrt{3}/2$
$\pi/2$	0	1	j
π	-1	0	-1
$3\pi/2$	1	-1	$\mid -j$
2π	1	0	1