UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Principles of Signal Analysis
Spring 2014

EXAM 3 SOLUTIONS

Friday, May 9, 2014

- This is a CLOSED BOOK exam.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	

Name: \qquad
\qquad

Useful Angles

θ	$\cos \theta$	$\sin \theta$	$e^{j \theta}$
0	1	0	1
$\pi / 6$	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3} / 2+j / 2$
$\pi / 4$	$\sqrt{2} / 2$	$\sqrt{2} / 2$	$\sqrt{2} / 2+j \sqrt{2} / 2$
$\pi / 3$	$1 / 2$	$\sqrt{3} / 2$	$1 / 2+j \sqrt{3} / 2$
$\pi / 2$	0	1	j
π	-1	0	-1
$3 \pi / 2$	1	-1	$-j$
2π	1	0	1

Gaussian Probability Densities (to Two Significant Figures)

x	$\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$
0	0.40
0.5	0.35
1	0.24
1.5	0.13
2	0.05
2.5	0.02
3	0.00

Other Possibly Useful Formulas

$$
\begin{gathered}
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \\
h[n]=\frac{\sin \omega_{c} n}{\pi n} \leftrightarrow H\left(e^{j \omega}\right)=\left\{\begin{array}{cc}
1 & |\omega|<\omega_{c} \\
0 & \text { otherwise }
\end{array}\right. \\
u[n]-u[n-N] \leftrightarrow e^{-j \frac{\omega(N-1)}{2}} \frac{\sin (\omega N / 2)}{\sin (\omega / 2)} \\
\delta[n] \leftrightarrow 1 \\
e^{j \alpha n} \leftrightarrow 2 \pi \delta(\omega-\alpha) \\
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N} \\
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N} \\
S=\sum_{k=1}^{n}\left(\vec{x}_{k}-\vec{m}\right)\left(\vec{x}_{k}-\vec{m}\right)^{T}
\end{gathered}
$$

\qquad

Problem 1 (21 points)

You are given a $640 \times 480 \mathrm{~B} / \mathrm{W}$ input image, $x\left[n_{1}, n_{2}\right]$ for integer pixel values $0 \leq n_{1} \leq 639$, $0 \leq n_{2} \leq 479$. You wish to interpolate the given pixel values in order to find the value of the image at location (500.3, 300.8). Specify the formula used to calculate $x[500.3,300.8]$ using each of the following algorithms. Be certain that your formula clearly states which pixels from the input image are used.
(a) Piece-wise constant interpolation.

$$
x[500.3,300.8]=x[500,301]
$$

(b) Bilinear interpolation.

$$
\begin{aligned}
x[500.3,300.8]= & (0.7)(0.2) x[500,300]+(0.7)(0.8) x[500,301]+ \\
& (0.3)(0.2) x[501,300]+(0.3)(0.8) x[501,301]
\end{aligned}
$$

(c) Sinc interpolation.

$$
x[500.3,300.8]=\sum_{n_{1}=0}^{639} \sum_{n_{2}=0}^{479} x\left[n_{1}, n_{2}\right] \operatorname{sinc}\left(\pi\left(500.3-n_{1}\right)\right) \operatorname{sinc}\left(\pi\left(300.8-n_{2}\right)\right)
$$

\qquad

Problem 2 (24 points)

The images $y[\vec{\eta}]$ and $x[\vec{m}]$ are related by an affine transformation, where $\vec{\eta}=[\eta, \xi, 1]^{T}$ and $\vec{m}=[m, n, 1]$ are coordinate vectors of the input and output image, respectively, m is the row index, and n is the column index.
(a) The affine transformation $\vec{\eta}=A \vec{m}$ is a rotation by $-\frac{\pi}{3}$ radians. Find A.

$$
A=\left[\begin{array}{ccc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(b) The affine transformation $\vec{\eta}=B \vec{m}$ consists of scaling the height of the image (m) by a factor of 5 , while keeping the width (n) unchanged. Find B.

$$
B=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(c) The affine transformation $\vec{\eta}=C \vec{m}$ consists of shifting all pixels to the left (negative n direction) by 20 columns. Find C.

$$
C=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -20 \\
0 & 0 & 1
\end{array}\right]
$$

(d) The affine transformation $\vec{\eta}=D \vec{m}$ consists of performing parts (a) through (c) of this problem, one after the other, in order. Specify the matrix D in terms of the matrices A, B, and C. There should be no numbers in your answer to this part.

$$
D=C A B
$$

\qquad

Problem 3 (11 points)

A particular triangle has corner coordinates at

$$
\vec{x}_{1}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \vec{x}_{3}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Let $\vec{\lambda}_{0}=\left[\lambda_{1}, \lambda_{2}, \lambda_{3}\right]^{T}$ be the barycentric coordinate vector corresponding to pixel $\vec{x}_{0}=\left[\frac{2}{3}, \frac{1}{3}\right]^{T}$. Find $\vec{\lambda}_{0}$.

$$
\vec{\lambda}_{0}=\left[\begin{array}{c}
0 \\
1 / 3 \\
2 / 3
\end{array}\right]
$$

Problem 4 (12 points)

The images $y[\vec{\eta}]$ and $x[\vec{m}]$ are related by an affine transformation $\vec{\eta}=A \vec{m}$, where $\vec{\eta}=$ $[\eta, \xi, 1]^{T}$ and $\vec{m}=[m, n, 1]^{T}$ are coordinate vectors of the input and output images, respectively. It is known that under this transformation, the origin swaps places with the point [2, 2], thus

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{l}
2 \\
2
\end{array}\right], \quad \text { and } \quad\left[\begin{array}{l}
2 \\
2
\end{array}\right] \rightarrow\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Specify the A matrix as completely as you can. There should be two scalar variables in your answer; you may use the variables names α and β.

$$
A=\left[\begin{array}{ccc}
\alpha & -1-\alpha & 2 \\
\beta & -1-\beta & 2 \\
0 & 0 & 1
\end{array}\right]
$$

\qquad

Problem 5 (16 points)

You are creating a recommender system that tries to recommend songs that will be considered to be similar to a given query. Each song is characterized by a two-dimensional vector $\vec{x}_{k}=\left[b_{k}, v_{k}\right]^{T}$ where b_{k} is the number of beats per minute, and v_{k} is the fraction of air-time during which there is a human voice. Your customer considers the following four songs to be similar:

$$
\left[\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}, \vec{x}_{4}\right]=\left[\begin{array}{cccc}
120 & 140 & 140 & 120 \\
0.3 & 0.3 & 0.5 & 0.5
\end{array}\right]
$$

You are given two more test data, $\vec{x}_{5}=\left[b_{5}, v_{5}\right]^{T}$ and $\vec{x}_{6}=\left[b_{6}, v_{6}\right]^{T}$, and you are asked whether or not \vec{x}_{5} and \vec{x}_{6} should be considered similar. Write formulas for the Mahalanobis distance between \vec{x}_{5} and \vec{x}_{6} under the following conditions:
(a) Estimate a diagonal data covariance matrix directly from the data, and use it to write the squared Mahalanobis distance $d_{\Sigma}^{2}\left(\vec{x}_{5}, \vec{x}_{6}\right)$.

$$
d_{\Sigma}^{2}\left(\vec{x}_{5}, \vec{x}_{6}\right)=\frac{\left(b_{5}-b_{6}\right)^{2}}{100}+\frac{\left(v_{5}-v_{6}\right)^{2}}{0.01}
$$

(b) Estimate a diagonal data covariance matrix from the data, then regularize it using regularization parameter $\lambda=0.01$ before using the result to write the squared Mahalanobis distance $d_{\Sigma}^{2}\left(\vec{x}_{5}, \vec{x}_{6}\right)$.

$$
d_{\Sigma}^{2}\left(\vec{x}_{5}, \vec{x}_{6}\right)=\frac{\left(b_{5}-b_{6}\right)^{2}}{100.01}+\frac{\left(v_{5}-v_{6}\right)^{2}}{0.02}
$$

Problem 6 (16 points)

A particular 6 megapixel image contains 3 million red pixels $([r, g, b]=[255,0,0])$ and 3 million blue pixels $([r, g, b]=[0,0,255])$.

Define its 8 -quantile color histogram $h\left[k_{R}, k_{G}\right]$ to be an 8×8 table of numbers, specifying the number of pixels having redshift in the $k_{R}^{\text {th }}$ quantile (where smaller k_{R} indicates smaller redshift, $0 \leq k_{R} \leq 7$), and greenshift in the $k_{G}^{\text {th }}$ quantile ($0 \leq k_{G} \leq 7$).
(a) Find $h\left[k_{R}, k_{G}\right]$.

$$
h\left[k_{R}, k_{G}\right]= \begin{cases}3 \times 10^{6} & k_{R}=7, k_{G}=0 \\ 3 \times 10^{6} & k_{R}=0, k_{G}=0 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Suppose that there is another 6 megapixel image with 3 million black pixels ($[r, g, b]=$ $[1,1,1])$ and 3 million white pixels $([r, g, b]=[255,255,255])$. Say that the color histogram of this image is called $g\left[k_{R}, k_{G}\right]$. What is $\left\|g\left[k_{R}, k_{G}\right]-h\left[k_{R}, k_{G}\right]\right\|$, the distance between the color histogram of the black-white image and the color histogram of the red-blue image?

$$
g\left[k_{R}, k_{G}\right]= \begin{cases}6 \times 10^{6} & k_{R}=2, k_{G}=2 \\ 0 & \text { otherwise }\end{cases}
$$

Correct answer can be either the ℓ_{1} or ℓ_{2} norm:

$$
\begin{gathered}
\left\|g\left[k_{R}, k_{G}\right]-h\left[k_{R}, k_{G}\right]\right\|_{2}=3 \sqrt{6} \times 10^{6} \\
\left\|g\left[k_{R}, k_{G}\right]-h\left[k_{R}, k_{G}\right]\right\|_{1}=12 \times 10^{6}
\end{gathered}
$$

